Настройки шрифта

| |

Фон

| | | |

 

Вспомните теперь, что количественную связь между I1, I2 и I12 можно выразить следующим образом: мгновенная высо­та волны в детекторе от щели 1 может быть представлена в виде (действительной части) h’1eiwt, где «амплитуда» h’1, вообще говоря, комплексное число. Интенсивность пропорциональна среднему квадрату высоты, или, пользуясь комплексными числами, |h’1|2. Высота волн от щели 2 тоже равна h2eiwt, а интенсивность пропорциональна |h’2|2. Когда обе щели открыты, высоты волн складываются, давая высоту (h’1+h’2)eiwt





и интенсивность |h1+h2|2. Множитель пропорциональности нас сейчас не интересует, так что формулу для интерфери­рующих волн можно записать в виде





Вы видите, что ничего похожего на то, что было с пулями, не получается. Раскрыв h1+h2|2, мы напишем





где d-—разность фаз между h1 и h2 . Вводя интенсивности из (37.2), можем написать



Последний член и есть «интерференционный член».

На этом мы покончим с волнами. Интенсивность их мо­жет быть любой, между ними возникает интерференция.

§ 4. Опыт с электронами

Представим себе теперь такой же опыт с электронами. Схема его изображена на фиг. 37.3. Мы поставим электронную пушку, которая состоит из вольфрамовой проволочки, нагреваемой то­ком и помещенной в металлическую коробку с отверстием. Если на проволочку подано отрицательное напряжение, а на короб­ку — положительное, то электроны, испущенные проволокой, будут разгоняться стенками и некоторые из них проскочат сквозь отверстие. Все электроны, которые выскочат из пушки, будут обладать (примерно) одинаковой энергией. А перед пуш­кой мы поставим снова стенку (на этот раз тонкую металлическую пластинку) с двумя дырочками





Фиг. 37.3. Опыт с электронами.



За стенкой стоит другая пластинка, она служит «земляным валом», поглотителем. Перед нею — подвижный детектор, скажем счетчик Гейгера, а еще лучше — электронный умножитель, к которому подсоединен динамик.

Заранее предупреждаем вас: не пытайтесь проделать этот опыт (в отличие от первых двух, которые вы, быть может, уже проделали). Этот опыт никогда никто так не ставил. Все дело в том, что для получения интересующих нас эффектов при­бор должен быть чересчур миниатюрным. Мы с вами ставим сейчас «мысленный эксперимент», отличающийся от других тем, что его легко обдумать. Что должно в нем получиться, из­вестно заранее, потому что уже проделано множество опытов на приборах, размеры и пропорции которых были подобраны так, чтобы стал заметен тот эффект, который мы сейчас опишем.

Первое, что мы замечаем в нашем опыте с электронами, это резкие «щелк», «щелк», доносящиеся из детектора (вернее, из динамика). Все «щелк» одинаковы. Никаких «полу­щелков».

Мы замечаем также, что они следуют совершенно не регулярно. Скажем, так: щелк..... щелк-щелк... щелк.........

щелк .... щелк-щелк ... ... щелк ... и т. д. Кому случалось видеть

счетчик Гейгера, знает, как он щелкает. Если подсчитать, сколь­ко раз динамик щелкнул за достаточно длительное время (ска­жем, за несколько минут), а потом снова подсчитать, сколько он отщелкал за другой такой же промежуток времени, то оба числа будут почти одинаковыми. Можно поэтому говорить о средней частоте, с которой слышатся щелчки (столько-то «щелк» в минуту в среднем).

Когда мы переставляем детектор, частота щелчков то рас­тет, то падает, но величина (громкость) каждого «щелк» всегда остается одной и той же. Если мы охладим проволоку в пушке, частота щелчков спадет, но каждый «щелк» будет звучать, как прежде. Поставим у поглотителя два отдельных детектора; тогда мы сразу заметим, что щелкает то один из них, то другой, но никогда оба вместе. (Разве что иногда наше ухо не раз­делит двух щелчков, последовавших очень быстро один за дру­гим.) Мы заключаем поэтому, что все, что попадает в детектор, приходит туда «порциями». Все «порции» одной величины; в детектор (или поглотитель) попадает только целая «порция»; в каждый момент в поглотитель попадает только одна порция, Мы говорим: «Электроны всегда приходят одинаковыми пор­циями».

Как и в опыте со стрельбой из пулемета, мы попытаемся теперь поискать в новом опыте ответ на вопрос: «Какова отно­сительная вероятность того, что электронная «порция» попадет в поглотитель на разных расстояниях х от середины?» Как и в том опыте, мы получим относительную вероятность, подсчи­тывая частоту щелчков при стабильно работающей пушке. Вероятность, что порции окажутся на определенном расстоя­нии х, пропорциональна средней частоте щелчков при этом х. В результате нашего опыта получена интереснейшая кривая p12, изображенная на фиг. 37.3,в. Да! Именно так и ведут себя электроны!

§ 5. Интерференция электронных волн

Попытаемся проанализировать кривую на фиг. 37.3 и посмотрим, сможем ли мы понять поведение электронов. Первое, что хочется отметить, это что раз они приходят порциями, то каждая из порций (ее тоже естественно именовать электроном) проходит либо сквозь отверстие 1, либо сквозь отверстие 2. Мы зафиксируем это в виде «Утверждения».

Утверждение А; Каждый электрон проходит либо сквозь отверстие 1, либо сквозь отверстие 2.

Если это предположить, то все электроны, достигшие пог­лотителя, можно разбить на два класса: 1) проникшие сквозь отверстие 1; 2) проникшие сквозь отверстие 2. Значит, получен­ная кривая — это сумма эффектов от электронов, прошедших сквозь отверстие 1, и электронов, прошедших сквозь отверстие 2. Давайте проверим это соображение экспериментально. Сна­чала проведем измерения с электронами, которые пройдут сквозь отверстие 1. Закроем отверстие 2 и подсчитаем щелчки в детекторе. Из частоты щелчков мы получим значение P1. Результат измерений показан на кривой pi фиг. 37.3,б. Выгля­дит это вполне разумно. Точно таким же образом измерим p2 — распределение вероятностей для электронов, прошедших сквозь отверстие 2. Оно тоже показано на рисунке.

Кривая P12, полученная, когда оба отверстия открыты, яв­ным образом не совпадает с суммой P1 + P2 (суммой вероятно­стей при только одном работающем отверстии). По аналогии с нашим опытом с волнами на воде мы скажем: «Здесь есть интер­ференция»:

Для электронов: Р12 №Р1-\\-Р2 . (37.5)

Откуда же могла появиться интерференция? Может, надо ·сказать так: «То, что порции проходят либо сквозь отверстие 1, либо сквозь отверстие 2,— это, по-видимому, неверно, ведь если бы это было так, то складывались бы вероятности. Должно быть, их движение сложней. Они разбиваются пополам и...» Да нет же! Это невозможно, они ведь всегда приходят целыми порциями... «Ну ладно, тогда может кое-кто из них, пройдя сквозь отверстие 1, заворачивает в 2, а после опять в 1, и так несколько раз, или еще как-то бродит по обоим отверстиям.

Тогда, закрыв отверстие 2, мы отрежем им путь и изменим ве­роятность того, что электрон, выйдя из отверстия 1, попадет в конце концов в поглотитель...» Но посмотрите-ка! Ведь есть такие точки на кривой, в которые при обоих открытых отвер­стиях попадает очень мало электронов, а при одном закрытом отверстии их попадает гораздо больше. Выходит, закрытие од­ного отверстия увеличивает число электронов, проходящих через другое. И наоборот, середина кривой P12 более чем вдвое превышает сумму P1+P2. Здесь, закрыв одно отверстие, вы тем самым уменьшаете число электронов, проходящих сквозь другое. Объяснить оба эффекта, предполагая, что электроны блуждают по сложным траекториям, пожалуй, довольно трудно.

Все это выглядит весьма таинственно. И тем таинственней, чем больше об этом думаешь. Идей, объясняющих кривую Р12 как результат сложного движения отдельных электронов через оба отверстия, было сфабриковано немало. Но ни одна из этих попыток не была успешной. Ни одна не смогла выразить Р12 через P1 и Р2 .

При этом, как ни странно, математика, связывающая P1 и Р2 с P12, проста до чрезвычайности. Ведь кривая P12 ничем не отличается от кривой I12 на фиг. 37.2, а последнюю-то полу­чить очень просто. То, что приближается к поглотителю, может быть описано двумя комплексными числами j1 и j2 (это функ­ции от х). Квадрат абсолютной величины j1 дает эффект от од­ного отверстия 1: P1=|j1|2. Эффект, полученный при открытом отверстии 2, точно таким же образом получается из j2, т. е. Р2=|j212. А общее действие обоих отверстий выразится в виде P12=|j1+j2|2. Выкладки абсолютно те же, что и для волн на воде! (А попробуйте-ка, кстати, получить такой простой резуль­тат, считая, что электроны шныряют взад и вперед сквозь пластинку по необычным траекториям.)

В конце концов мы приходим к следующему заключению: электроны приходят порциями, подобно частицам, а вероят­ность прибытия этих порций распределена так же, как и интен­сивность волн. Именно в этом смысле электрон и ведет себя «частично как частица, а частью как волна».

Заметим, кстати, что, имея дело с классическими волнами, мы определили интенсивность как среднее по времени от квад­рата амплитуды волны и применили комплексные числа как математический прием, облегчающий расчеты. Но в квантовой механике амплитуды обязаны представляться комплексными числами. Одной только действительной части амплитуд недостаточно. Пока, впрочем, это выглядит лишь как техническая подробность, потому что формулы с виду одни и те же.

А поскольку вероятность прохода сквозь оба отверстия вы­ражается столь просто (хотя и не равна сумме P12), то больше по этому поводу сказать нечего. Но имеется еще мно­жество тонкостей, связанных с таким поведением природы. Хотелось бы рассказать о некоторых из них. Во-первых, раз число частиц, достигающих определенной точки, не равно числу прохождений сквозь отверстие 1 плюс число прохождений че­рез отверстие 2 (как этого можно было ожидать, основываясь на «Утверждении А»), то, несомненно, «Утверждение А» неверно. Неверно, что электроны проходят либо сквозь отверстие 1, либо сквозь отверстие 2. Но этот вывод можно проверить и иначе.

§ 6. Как проследить за электроном?

Попытаемся проделать такой опыт. В наш электронный при­бор как раз за стенкой между двумя отверстиями поместим сильный источник света (фиг. 37.4). Известно, что электричес­кие заряды рассеивают свет. Поэтому, каким бы путем электрон ни прошел к детектору, он обязательно рассеет немного света в наш глаз, и мы увидим, где он проскочил. Скажем, если он проскользнет сквозь отверстие 2, как это показано на рисунке, то мы увидим, как где-то около точки А что-то блеснуло. Если же он проскочит сквозь верхнее отверстие, то блеснет где-то поблизости от отверстия 1. А если бы случилось так, что свет блеснет сразу в двух местах, потому что электрон разделился пополам, то ... Но лучше приступим к опыту!





Вот что мы увидим: всякий раз, когда мы слышим из детек­тора «щелк», мы также видим вспышку света или у отверстия 1, или у отверстия 2, но никогда у обоих отверстий сразу! Так происходит при любом положении детектора. Отсюда мы делаем вывод, что когда мы смотрим на электрон, то обнаруживаем, что он проходит или через одно отверстие, или через другое.

Фиг. 37.4. Другой опыт с электронами.

«Утверждение А», как показывает эксперимент, выполняется с необходимостью.

Что же в таком случае неверно в наших доводах против правильности «Утверждения А»? Почему же все-таки P12 не равно P12? Продолжим наш опыт! Давайте проследим за электронами и посмотрим, что они поделывают. Для каж­дого положения детектора (для каждого фиксированного х) мы подсчитаем, сколько электронов в него попало, и одновременно проследим (наблюдая вспышки), через какие отверстия они прошли. Следить мы будем так: услышав «щелк», мы поставим палочку в первом столбце, если заметим вспышку у первого отверстия; если же вспышка блеснет у отверстия 2, то мы отме­тим это палочкой во второй колонке. Каждый попадающий в детектор электрон будет отнесен к одному из двух классов: либо к классу электронов, проникших сквозь отверстие 1, либо к классу электронов, проникших сквозь отверстие 2. Количество палочек, накопившихся в первой колонке, даст нам р1 — вероятность того, что электрон пройдет к детектору сквозь отверстие 1; точно так же вторая колонка даст Р\'2 — вероят­ность того, что электрон воспользовался отверстием 2. Повторив эти измерения для многих значений х, мы получим кривые р\'1 и Р\'2, показанные на фиг. 37.4,б.

Ну что ж, ничего неожиданного в них нет! Кривая P\'1 вышла похожей на кривую P1, которая получалась, когда от­верстие 2 закрывали, а кривая P\'2 похожа на то, что мы полу­чали, когда закрывали отверстие 1. Итак, никаких блужданий от дырки к дырке не существует. Когда мы следим за электро­нами, то оказывается, что они проникают сквозь стенку со щелями в точности так, как мы ожидали. Закрыты ли отверстия или открыты, все равно те электроны, которые мы видели про­никающими сквозь отверстие 1, распределены одинаково.

Но погодите! Какова же теперь полная вероятность — ве­роятность того, что электрон попал в детектор любым путем? У нас уже есть сведения об этом. Сделаем вид, что мы не заме­чали световых вспышек, т. е. сложим палочки, стоящие в обеих колонках. Нам нужно только сложить числа. Для вероятности того, что электрон попал в поглотитель, пройдя через любое из отверстий, мы действительно получим Р\'12 = P1+P2. Выходит, что, хоть нам и удалось проследить, через какое от­верстие проходят электроны, никакой прежней интерференцион­ной кривой P12 не вышло, получилась новая кривая Р\'12 — кривая без интерференции! А выключите свет — и снова воз­никнет Р12.

Мы приходим к заключению, что, когда мы смотрим на электроны, распределение их на экране совсем не такое, как тогда, когда на них не смотрят. Уж не от включения ли света меняется ход событий? Должно быть, электроны — вещь очень деликатная; свет, рассеиваясь на электронах, толкает их и меняет их движение. Мы ведь знаем, что электрическое поле, дей­ствуя на заряд, прилагает к нему силу. От этого, по-видимому, и следует ожидать изменения движения. Во всяком случае, свет оказывает на электроны большое влияние. Пытаясь «проследить» за электронами, мы изменили их движение. Толчки, испыты­ваемые электронами при рассеянии фотонов, очевидно, таковы, что движение электронов сильно изменяется: электрон, который прежде мог попасть в максимум P12 , теперь приземляется в ми­нимуме Р12; вот поэтому никакой интерференции и не заметно.

«Но к чему же такой яркий источник света? — можете вы подумать.— Сбавьте яркость! Световые волны ослабнут и не смогут так сильно возмущать электроны; ослабляя свет все больше и больше, можно в принципе добиться того, что воздей­ствием света на электрон можно будет вообще пренебречь». Будь по-вашему. Давайте попробуем.

Первое, что мы замечаем, это что блеск света, рассеянного на электронах, не слабеет. Сила вспышек остается прежней. От того, что свет стал тускнеть, изменилось лишь одно: времена­ми, услышав щелчок детектора, мы никакой вспышки не заме­чаем; электрон прошел незамеченным. Мы просто обнаружива­ем, что свет ведет себя так же, как электроны: мы знаем, что он «волнист», а теперь убеждаемся, что он к тому же распро­страняется «порциями». Он доставляется—или рассеивается — порциями, которые мы называем «фотонами». Понижая интен­сивность источника света, мы не меняем величины фотонов, а меняем только темп, с каким они испускаются. Этим и объяс­няется, почему при притушенном свете некоторые электроны проскальзывают к детектору незаметно. Просто как раз в тот момент, когда электрон двигался к детектору, фотона в нужном месте не оказалось.

Все это немного нас обескураживает. Если правильно, что всякий раз, когда мы «видим» электрон, получаются одинаковые вспышки, то все увиденные нами до сего времени электроны были возмущенными электронами. Давайте тогда опыт с тусклым светом проведем иначе. Теперь, услышав щелчок в детекторе, мы будем ставить палочку в одну из трех колонок: в первую, если электрон замечен у отверстия 1, во вторую, если его ви­дели у отверстия 2, и в третью, если его вообще не видели. Обработав данные (рассчитав вероятности), мы получим следую­щие результаты: «виденные у отверстия 1» будут распределены по закону P\'1 , «виденные у отверстия 2» — по закону Р\'2 (так что «виденные либо у отверстия 1, либо у отверстия 2» распреде­ляются по закону P\'12), а «незамеченные» распределены «волноподобно», как Р12 на фиг. 37.3! Если электроны не видимы, возникает интерференция!

Это уже можно понять. Когда мы не видим электрон, значит, фотон не возмутил его; а если уж мы его заметили, значит, он возмущен фотоном. Степень возмущения всегда одна и та же, потому что все фотоны света производят эффекты одинаковой величины, достаточной для того, чтобы смазать любые интерфе­ренционные эффекты.

Но нет ли хоть какого-нибудь способа увидеть электрон, не возмущая его? Мы уже говорили о том, что импульс, уноси­мый фотоном, обратно пропорционален его длине волны (р=h/l). Чем больше импульс у фотона, тем сильнее он толкает электрон, когда рассеивается на нем. Ага! Раз мы хотим как можно слабее возмущать электроны, то не стоит снижать ин­тенсивность света, лучше снизить его частоту (или, что то же самое, увеличить длину волны). Нужно осветить электроны красным светом. Можно воспользоваться даже инфракрасным светом или радиоволнами (как в радаре). При помощи оборудо­вания, приспособленного для восприятия длинноволнового света, можно тоже разглядеть, куда направился электрон. Может быть, более «мягкий» свет поможет нам избежать сильного воз­мущения электронов.

Ну что ж, примемся экспериментировать с длинными вол­нами. Будем повторять наш опыт, увеличивая все больше и больше длину волны. На первых порах ничего не изменится, все результаты будут прежними. А потом произойдет ужасно неприятная вещь. Вы помните, что, изучая микроскоп, мы заметили, что вследствие волновой природы света появляются ограничения на расстояния, на которых два пятна еще не сли­ваются в одно. Это расстояния порядка длины волны света. И вот теперь это ограничение опять всплывает. Как только длина волны сравняется с промежутком между отверстиями, вспышки станут такими размытыми, что невозможно будет разобрать, возле какого отверстия произошла вспышка! Мы не сможем больше угадывать, какой дыркой воспользовался электрон! Известно, что где-то проскочил, а где — неясно! И это как раз при таком цвете, когда толчки становятся еле заметными, а кривая Р\'12 начинает походить на P12 , т. е. начи­нает чувствоваться интерференция. И только при длинах волн, намного превышающих расстояние между отверстиями (когда уже нет никакой возможности разобрать, куда прошел элект­рон), возмущение, причиняемое светом, становится таким сла­бым, что снова появляется кривая Р12 (см. фиг. 37.3).

В нашем опыте мы обнаружили, что невозможно приспосо­бить свет для того, чтобы узнавать, через какое отверстие про­ник электрон, и в то же время не исказить картины. Гейзенберг предположил, что новые законы природы были бы совместимы друг с другом только в том случае, если бы существовали некоторые фундаментальные ограничения на наши эксперименталь­ные возможности, ограничения, которых прежде не замечали. Он предложил в качестве общего принципа свой принцип неоп­ределенности. В терминах нашего эксперимента он звучит следующим образом: «Невозможно соорудить аппарат для опре­деления того, через какое отверстие проходит электрон, не воз­мущая электрон до такой степени, что интерференционная кар­тина пропадает». Если аппарат способен определять, через какую щель проходит электрон, он не способен оказаться столь деликатным, чтобы не исказить картину самым существенным образом. Никому никогда не удалось изобрести или просто указать способ, как обойти принцип неопределенности. Значит, мы обязаны допустить, что он описывает одну из основных ха­рактеристик природы.

Полная теория квантовой механики, которой мы в настоя­щее время пользуемся для описания атомов, а значит, и всего вещества, зависит от правильности принципа неопределенности. Квантовая механика весьма успешно справляется со своими задачами; это укрепляет нашу веру в принцип. Но если когда-нибудь удастся «разгромить» принцип неопределенности, то квантовая механика начнет давать несогласованные результа­ты и ее придется исключить из рядов правильных теорий явле­ний природы.

«Ну, хорошо,— скажете вы,— а как же быть с «Утвержде­нием А»? Значит, верно все-таки, что электрон проходит либо сквозь отверстие 1, либо сквозь 2? Или же это неверно?» Един­ственный ответ, который может быть дан, таков: мы нашли из опыта, что существует некоторый определенный способ, которым мы должны рассуждать, чтобы не прийти к противо­речиям.

Вот как мы обязаны рассуждать, чтобы не делать ошибочных предсказаний. Если вы следите за отверстиями, а точнее, если у вас есть прибор, способный узнавать, сквозь какое отверстие из двух проник электрон, то вы можете говорить, что он прошел сквозь отверстие 1 (или 2). Но если вы не пытались узнать, где прошел электрон, если в опыте не было ничего возмущавшего электроны, то вы не смеете думать, что электрон прошел либо сквозь отверстие 1, либо сквозь отверстие 2. Если вы все же начнете так думать и затем делать из этой мысли различные выводы, то, несомненно, натворите ошибок в своем анализе. Вы вынуждены балансировать на этом логическом канате, если хотите успешно описывать природу.

· · ·

Если движение всего вещества, подобно электронам, нужно описывать, пользуясь волновыми понятиями, то как быть с пулями в нашем первом опыте?



Фиг. 37.5. Интерференционная картина при рассеянии пуль.

а — истинная (схематично); б — на­блюдаемая.

Почему мы не увидели там интерференционной картины? Дело оказывается в том, что у пуль длина волны столь незначительна, что интерференцион­ные полосы становятся очень тонкими. Столь тонкими, что никакой детектор разумных размеров не разделит их на отдель­ные максимумы и минимумы. Мы с вами видели только нечто усредненное — это и есть классическая кривая. На фиг. 37.5 мы попытались схематически изобразить, что происходит с крупными телами. На фиг. 37.5, а показано распределение ве­роятностей для пуль, предсказываемое квантовой механикой. Предполагается, что резкие колебания должны дать представ­ление об интерференционной картине от очень коротких волн. Но любой физический детектор неизбежно вынужден будет накрыть сразу множество зигзагов этой кривой, так что изме­рения, проведенные с его помощью, дадут плавную кривую, показанную на фиг. 37.5,6.

§ 7. Начальные принципы квантовой мвханики

Теперь подытожим основные выводы из наших опытов. Сделаем мы это в такой форме, чтобы они оказались справедли­выми для всего класса подобных опытов. Сводку итогов можно записать проще, если сперва определить «идеальный опыт», т. е. опыт, в котором отсутствуют неопределенные внешние влияния и нет никаких не поддающихся учету изменений, колебаний и т. д. Точная формулировка будет такова: «Идеаль­ным опытом называется такой, в котором все начальные и ко­нечные условия опыта полностью определены». Такую сово­купность начальных и конечных условий мы будем называть «событием». (Например: «электрон вылетает из пушки, попада­ет в детектор, и больше ничего не происходит».) А сейчас дадим нашу сводку выводов.



СВОДКА ВЫВОДОВ

Вероятность события в идеальном опыте дается квадра­том абсолютной величины комплексного числа j, назы­ваемого амплитудой вероятности.

Р — вероятность,

j — амплитуда вероятности, (37 6)

Р=|j|2.

Если событие может произойти несколькими взаимно исключающими способами, то амплитуда вероятности со­бытия — это сумма амплитуд вероятностей каждого отдель­ного способа. Возникает интерференция.



(37.7)

3) Если ставится опыт, позволяющий узнать, какой из этих взаимно исключающих способов на самом деле осуще­ствляется, то вероятность события—это сумма вероятно­стей каждого отдельного способа. Интерференция отсут­ствует.

P = P1 +P2 (37.8)

· · ·

Быть может, вам все еще хочется выяснить: «А почему это? Какой механизм прячется за этим законом?» Так вот: никому никакого механизма отыскать не удалось. Никто в мире не смо­жет вам «объяснить» ни на капельку больше того, что «объяс­нили» мы. Никто не даст вам никакого более глубокого представ­ления о положении вещей. У нас их нет, нет представлений о более фундаментальной механике, из которой можно вывести эти результаты.

Мы хотели бы подчеркнуть очень важное различие между классической и квантовой механикой. Мы уже говорили о веро­ятности того, что электрон попадает туда-то и туда-то в данных обстоятельствах. Мы подразумевали, что с нашим (да и с са­мым лучшим) экспериментальным устройством невозможно бу­дет предсказывать точно, что произойдет. Мы способны только определять шансы! Это означало бы, если это утверждение пра­вильно, что физика отказалась от попыток предсказывать точно, что произойдет в определенных условиях. Да! Физика и впрямь сдалась. Мы не умеем предсказывать, что должно было бы случиться в данных обстоятельствах. Мало того, мы уверены, что это немыслимо: единственное, что поддается предвычислению,— это вероятность различных событий. Прихо­дится признать, что мы изменили нашим прежним идеалам понимания природы. Может быть, это шаг назад, но никто не научил нас, как избежать его!

Сделаем теперь несколько замечаний об одном утвержде­нии, которое иногда делали те, кто не хотел пользоваться приведенным описанием. Они говорили: «Может быть, в электроне происходят какие-то внутренние процессы, имеются какие-то внутренние переменные, о чем мы пока ничего не знаем. Может быть, именно поэтому мы не умеем предугадывать, что случит­ся. А если бы мы могли попристальней вглядеться в электрон, то смогли бы сказать, куда он придет». Насколько нам извест­но, такой возможности нет. Трудности все равно остаются. Предположим, что внутри электрона есть механизм какого-то рода, определяющий, куда электрон собирается попасть. Тогда эта машина должна определить также, через какое от­верстие он намерен проследовать. Но не забывайте, что вся эта внутриэлектронная механика не должна зависеть от того, что делаем мы, и, в частности, от того, открыли мы данное отверстие или нет. Значит, если электрон, отправляясь в путь, уже прикинул, сквозь какую дырку он протиснется и где он приземлится, то для электронов, облюбовавших отверстие 1, мы получим распределение P1, а для остальных — распреде­ление p2. А тогда для тех электронов, которые прошли через оба отверстия, с необходимостью распределение окажется сум­мой P1+P2 . Не видно способа обойти этот вывод. Но мы экспериментально доказали, что он неверен. Никто еще не нашел отгадки этой головоломки. Стало быть, в настоящее время приходится ограничиваться расчетом вероятностей. Мы говорим «в настоящее время», но мы очень серьезно подозре­ваем, что все это — уже навсегда и разгрызть этот орешек че­ловеку не по зубам, ибо такова природа вещей.

§ 8. Принцип неопределенности

Вот как сам Гейзенберг сформулировал свой принцип не­определенности: если вы изучаете какое-то тело и вы в состоянии определить z-компоненту импульса тела с неопределенностью Dр, то вы не можете одновременно определить координату х тела с точностью, большей чем Dx= h/Dр.

Произведение неопределенностей в положении тела и в его импульсе в любой момент должно быть больше постоянной Планка. Это частный случай принципа неопределенности. Более, общая формулировка была высказана в предыдущем параг­рафе: нельзя никаким образом устроить прибор, определяю­щий, какое из двух взаимно исключающих событий осуществилось, без того, чтобы в то же время не разрушилась интерфе­ренционная картина.

Сейчас на одном частном случае мы покажем, что, если не иметь в своем распоряжении какого-нибудь принципа, наподо­бие принципа Гейзенберга, трудностей избежать никак нельзя. Представим себе такое видоизменение опыта, показанного на фиг. 37.3, в котором стенкой с отверстиями служит пластинка на катках, способная откатываться вверх и вниз (в x-направлении),

как показано на фиг. 37.6.



Фиг. 37.6. Опыт, в котором измеряется отдача стенки.



Внимательно следя за дви­жением пластинки, можно попытаться узнать, сквозь какое отверстие прошел электрон. Представьте, что случится, когда детектор поставят в точку х=0. Когда электрон проходит через отверстие 1, он должен отклониться вниз от пластинки, чтобы попасть в детектор. Так как изменилась вертикальная компонента импульса, то к пластинке приложится сила отда­чи — тот же импульс, но в противоположном направлении. Пластинка испытает толчок вверх. А когда электрон пройдет сквозь нижнее отверстие, пластинка почувствует толчок вниз. И при любом другом положении детектора импульс, получае­мый пластинкой, будет тоже неодинаков: когда электрон проска­кивает через верхнюю дырку — один, когда сквозь нижнюю — другой. И, значит, не трогая электрон, ни капельки не воз­мущая его, а лишь следя за пластинкой, можно узнать, каким путем воспользовался электрон.

Чтобы определить это, нам нужно только знать, каков был импульс экрана до прихода электрона. Тогда, измерив импульс экрана после пролета электрона, мы сразу увидим, насколько он переменился. Но вспомните, что, согласно принципу неоп­ределенности, при этом уже невозможно будет знать положение пластинки с произвольной точностью. Однако если мы не зна­ем точно, где она находится, как же мы узнаем, где эти два отверстия? Для каждого нового электрона, проникающего сквозь пластинку, отверстия окажутся на новом месте. А это значит, что центр нашей интерференционной картины для каж­дого электрона тоже будет на новом месте. Интерференционные полосы (колебания вероятности) смажутся. В следующей гла­ве мы докажем численно, что при измерении импульса плас­тинки (достаточно точном для того, чтобы из измерений отдачи узнать номер отверстия) неопределенности в координате х пластинки как раз хватит на то, чтобы сдвинуть возникающую в детекторе картину вверх или вниз на расстояние от максимума до ближайшего минимума. От этих случайных сдвигов кар­тина интерференции размажется и от нее, в конце концов, не останется и следа.

Принцип неопределенности «спасает» квантовую механику. Гейзенберг понимал, что если б можно было с большей точно­стью измерять и положение, и импульс одновременно, то кван­товая механика рухнула бы. Вот он и допустил, что это невоз­можно. Тогда люди принялись придумывать способы, как все-таки это сделать. Но никому не удалось представить себе способ, как измерять положение и импульс чего угодно — эк­рана, электрона, биллиардного шара, любого предмета — с большей точностью. И квантовая механика продолжает вести свой рискованный, впрочем, вполне четко очерченный образ жизни.



Глава 38

СООТНОШЕНИЕ МЕЖДУ ВОЛНОВОЙ И КОРПУСКУЛЯРНОЙ ТОЧКАМИ ЗРЕНИЯ

§ 1. Волны амплитуды вероятности

§ 2. Измерение положения и импульса

§ 3. Дифракция на кристалле

§ 4. Размер атома

§ 5. Уровни энергии

§ 6. Немного философии

§ 1. Волны амплитуды вероятности

В этой главе мы с вами обсудим соотношение между волновой и корпускулярной точками зрения. Из предыдущей главы мы уже знаем, что ни та, ни другая неверны. Обычно мы всегда старались формулировать понятия аккуратно или по крайней мере, достаточно точно, чтобы при дальнейшем изучении их не пришлось бы менять. Разрешалось их расширять, обобщать, но уже никак не менять! Но как только мы пытаемся говорить об электроне как волне или об элект­роне как частице, то любая из этих точек зре­ния рано или поздно меняется, ведь обе они приблизительны. Поэтому все, что мы изучим в этой главе, в каком-то смысле неправильно; будут высказаны некие полуинтуитивные со­ображения, которым со временем предстоит уточняться, и кое-что придется слегка изме­нить, когда мы их уточним с помощью кванто­вой механики. Причина в том, что, не собираясь сейчас штудировать квантовую механику по всем правилам, мы хотим получить, по край­ней мере, представление о характере эффектов, которые мы там обнаружим. Да и к тому же весь наш опыт относится либо к волнам, либо к частицам, и поэтому весьма удобно исполь­зовать то те, то другие представления, чтобы добиться некоторого понимания того, что про­изойдет в определенных обстоятельствах, пока мы еще не знаем всей математики квантовомеханических амплитуд. По мере нашего продвиже­ния вперед мы будем стараться прояснять самые слабые места. Впрочем, многие из этих мест почти верны, все дело просто в толковании.

Прежде всего, мы уже знаем, что новый, выдвигаемый кван­товой механикой способ изображать мир — новая система ми­ра — состоит в том, чтобы задавать амплитуду любого события, которое может случиться. Если событие состоит в регистрации частицы, то можно задать амплитуду обнаружения этой части­цы в тех или иных местах и в то или иное время. Вероятность обнаружить частицу тогда будет пропорциональна квадрату абсолютной величины амплитуды. Вообще говоря, вероятность обнаружить частицу в каком-то месте и в какое-то время ме­няется в зависимости от места и от времени.

В частном случае амплитуда может изменяться синусои­дально в пространстве и времени по закону exp[i(wt-k·r)] (не забывайте, что амплитуда — число комплексное, а не дей­ствительное); тогда в нее входит определенная частота w и определенный волновой вектор k (величина k=|k| называется волновым числом). Это отвечает той предельной классической ситуации, когда можно считать, что имеется частица с извест­ной энергией Е, которая связана с частотой соотношением



(38.1)

и с известным импульсом р, связанным с волновым вектором формулой



(38.2)

Это означает, что понятие частицы ограниченно. Само понятие частицы, понятие ее положения, ее импульса и т. д., которым мы так часто пользуемся, в некотором смысле не является удовлетворительным. Например, когда амплитуда, относящаяся к событию обнаружения частицы в том или ином месте, дается функцией exp[i(wt-k·r)], равной по абсолютной величине единице, то это значит, что вероятность обнаружить частицу одинакова для любой точки. Получается, что тогда мы просто не знаем, где она находится. Она может оказаться где угодно, ее положение в высшей \'степени неопределенно.

Когда же положение частицы более или менее известно, когда оно может быть предсказано довольно точно, то вероят­ность того или иного ее местоположения должна быть отлична от нуля в определенной области, имеющей, скажем, длину Dx. Вне этой области вероятность равна нулю. Вероятность — это квадрат абсолютной величины амплитуды. Когда квадрат абсолютной величины равен нулю, то и амплитуда равна нулю.



Фиг. 38.1. Волновой пакет длиной Dx.



Выходит, что амплитуда описывает цуг волн протяженностью Dx (фиг. 38.1), а длине волны (расстоянию между горбами волн) в цуге волн соответствует некоторое значение импульса час­тицы.

Здесь мы сталкиваемся со странным и в то же время очень простым явлением, никак непосредственно с квантовой меха­никой не связанным. Оно известно всем, кто занимался волна­ми, даже не зная квантовой механики, а именно: нельзя одно­значно определить длину волны для короткого цуга волн. У такого цуга нет определенной длины волн; в волновом числе имеется неопределенность, связанная с конечной длиной цуга, а значит, и неопределенность в импульсе.

§ 2. Измерение положения и импульса

Чтобы понять, почему в квантовой механике появляется неопределенность в положении и (или) в импульсе, рассмотрим два примера. Мы уже видели раньше, что если бы этого не было, если бы можно было параллельно измерять и местонахождение, и импульс какого-то тела, то возник бы парадокс. К счастью, парадокса не возникает, а то обстоятельство, что неопределен­ность естественным образом вытекает из волновой картины, свидетельствует, что все здесь взаимосвязано.

Вот первый пример, показывающий связь импульса и коор­динаты в условиях, которые легко себе представить. Пусть сквозь единственную щель в экране проникают частицы, при­шедшие издалека и обладающие определенной энергией. Дви­жутся все они горизонтально (фиг. 38.2). Сосредоточим наше внимание на вертикальной составляющей импульса. У каждой из этих частиц имеется (в обычном классическом смысле) го­ризонтальная составляющая импульса определенной величины р0 . Вертикальная составляющая импульса рy (до того, как частица пройдет сквозь прорезь) также в классическом смысле хорошо известна: частицы не движутся ни вверх, ни вниз, по­тому что их источник очень удален, значит, вертикальная со­ставляющая импульса частицы в точности равна нулю. А теперь предположим, что ширина щели равна В.





Фиг. 38.2. Дифракция частиц, проходящих сквозь щель.

Когда частица прой­дет через щель, то ее вертикальная координата у определится с хорошей точностью ± В. Это значит, что неопределенность в положении частицы Dy будет порядка В. Может, вы захотите сказать, что Dpy=0, потому что импульс частиц, мол, точно горизонтален? Но это не так. Это прежде мы знали, что импульс имеет только горизонтальную составляющую, а теперь мы этого уже не знаем. Перед тем как частица проникла сквозь щель, мы не знали ее вертикальной координаты. После того как час­тица проникла сквозь щель, мы узнали ее вертикальную коор­динату, но потеряли информацию об ее вертикальной состав­ляющей импульса! Почему? Да потому, что, согласно волновой теории, происходит отклонение, или дифракция, волн, проник­ших сквозь щель, подобно тому как это бывает со светом. По­этому есть конечная вероятность того, что частицы, пройдя сквозь щель, не пойдут прямо вперед. Вся картина распростра­нения расплывается за счет дифракции, и угол этого расшире­ния (угол, под которым виден первый минимум) есть мера неоп­ределенности направления частицы.

Каким образом происходит расплывание изображения в ширину? Расплывание означает, что существует некая вероят­ность того, что частица отправится вверх или вниз, т. е. приоб­ретет компоненту импульса, направленную вверх или вниз. (Мы говорим и о вероятности и о частице, потому что дифрак­ционную картину можно обнаружить с помощью счет­чика частиц, а когда счетчик регистрирует частицу, скажем, в точке С на фиг. 38.2, то он регистрирует частицу целиком. А это значит в классическом смысле, что частица имеет вертикальный импульс, направляющий ее из щели прямо в точку С.)

Чтобы примерно представить себе степень расплывания импульса, напишем, что вертикальный импульс ру размазан на р0Dq, где р0 — горизонтальный импульс. Чему же равно Dq в размазанной картине? Известно, что первый минимум на­блюдается при угле Dq таком, что в этом направлении волна от дальнего края щели должна отстать на одну свою длину от волны от ближнего края (мы об этом уже говорили в гл. 30). Стало быть, Dq равно l/B, и тем самым Dрy в этом эксперименте равно р0l/В. Чем меньше будет В, чем точнее будет определять­ся положение частицы, тем шире будет дифракционная картина. Вспомните, что когда мы закрывали щели в эксперименте с микроволнами, то интенсивность в стороне от щели возрастала. Значит, чем уже щель, тем шире становится картина дифрак­ции, тем правдоподобнее, что мы обнаружим у частицы импульс, направленный в сторону. И неопределенность в вертикальном импульсе, действительно, обратно пропорциональна неопре­деленности в у, потому что их произведение равно p0l.





Фиг. 38.3. Определение импульса с помощью дифракционной решет­ки.



Но l — это длина волны, а р0 — импульс, и в соответствии с квантовой механикой их произведение — это постоянная Планка h. Получается, что произведение неопределенностей в вертикальном импульсе и в вертикальной координате есть величина порядка h:



(38.3)

Мы не можем приготовить систему, в которой положение час­тицы по вертикали было бы известно, и в то же время предска­зывать с определенностью, превышающей h/Dy, насколько ее движение отклонится от вертикали. Неопределенность в вер­тикальном импульсе всегда больше h/Dy, если Dy — неопре­деленность, с какой мы знаем положение частицы.

Некоторые люди утверждают, что в квантовой механике все неправильно. Когда, говорят они, частица приближалась сле­ва, ее вертикальный импульс был равен нулю. А когда она прошла через щель, стало известно ее положение. И то, и дру­гое может быть определено с любой точностью.

Совершенно верно. Мы можем зарегистрировать частицу и определить, каково ее положение и каким должен был быть ее импульс, чтобы она попала туда, куда она попала. Это все верно. Но соотношение неопределенностей (38.3) ничего общего с этим не имеет. Уравнение (38.3) относится к возмож­ности предсказания, а не к замечаниям о том, что произошло в прошлом. Какая польза в том, что мы скажем: «Я знал, каков был импульс до прохода частицы сквозь щель, а теперь узнал к тому же и координату»? Ведь теперь-то знание об импульсе частицы уже утеряно. Раз она прошла сквозь щель, то мы уже не можем больше предсказывать ее вертикальный импульс. Речь идет о теории, способной к предсказаниям, а не об изме­рениях после того, как все завершилось. Мы и обсуждаем воп­рос о том, что можно предвидеть.

Попробуем теперь по-иному подойти к этим вещам. Приведем другой пример того же явления, на этот раз с более подробными количественными оценками. Прежде мы измеряли импульс классическим способом: мы рассматривали направление, скорость, углы, и тому подобное; в этом заключался способ получения импульса путем классического анализа. Но раз импульс связан с волновым числом, то в природе существует и другой, совершенно иной путь измерения импульса частиц (все равно, фотона или любой другой), не имеющий классиче­ского аналога. В нем используется уравнение (38.2) и просто измеряется длина волны. Давайте попробуем таким способом измерить импульс.

Пусть имеется решетка со множеством линий (фиг. 38.3), на которую направлен пучок частиц. Мы неоднократно рассматривали эту задачу: когда у частиц есть определенный импульс, то вследствие интерференции в некотором направле­нии возникает очень резкий максимум. Мы также говорили о том, насколько точно можно определить этот импульс, т. е. какова разрешающая сила решетки. Мы не будем заново это все выводить, а сошлемся на гл. 30; там мы выяснили, что относительная неопределенность в длине волны, связанная с данной решеткой, равна 1/Nm, где N — количество линий решетки, а т — порядок дифракционного максимума. Иначе говоря,



(38.4)





Перепишем эту формулу в виде

(38.5)

где расстояние L показано на фиг. 38.3. Это — разность двух расстояний: расстояния, которое должна пройти волна (или частица), отразившись от нижней части решетки, и расстояния, которое нужно пройти, отразившись от верха решетки.

Другими словами, волны, образующие дифракционный мак­симум,— это волны, приходящие от разных частей решетки. Первыми прибывают волны, вышедшие снизу — это начало цуга волн, а потом следуют дальнейшие части цуга, от средних частей решетки, пока не придут волны от верха: точка цуга, уда­ленная от его начала на расстояние L. Значит, чтобы получить в спектре резкую линию, отвечающую определенному импуль­су [с неопределенностью, даваемой формулой (38.4)], для это­го нужен цуг волн длиной L. Если цуг чересчур короток (ко­роче L), то не вся решетка будет действовать. Волны, образую­щие спектр, будут отражаться при этом только от небольшого куска решетки, и решетка не будет хорошо работать — полу­чится сильное размытие по углу. Чтобы его сузить, надо исполь­зовать всю ширину решетки так, чтобы хотя бы на одно мгнове­ние весь цуг волн улегся одновременно на решетке и рассеялся ото всех ее частей. Потому-то длина цуга должна быть равна L; тогда только неопределенность в длине волны окажется меньше, чем указано формулой (38.5). Заметим, что



(38.6)

поэтому



(38.7)

где L — длина цуга волн.

Это означает, что когда цуг волн короче L, то неопределен­ность в волновом числе превосходит 2p/L. Иначе говоря, не­определенность в волновом числе, умноженная на длину вол­нового цуга (назовем ее на минутку Dx), больше 2p. Мы назвали ее Dx потому, что это как раз неопределенность в по­ложении частицы. Если цуг волн тянется только на конечном промежутке, то лишь там мы и можем обнаружить частицу с неопределенностью Dx;. Это свойство волн (тот факт, что про­изведение длины цуга волн на неопределенность в волновом числе, связанном с этим цугом, не меньше 2p) опять-таки хо­рошо знакомо всем, кто занимался волнами. И никакого отно­шения к волновой механике оно не имеет. Просто нельзя очень точно подсчитать число волн в конечной их веренице.

Объяснить это можно и по-другому. Пусть длина цуга волн L. Так как на концах цуга волны спадают (как на фиг. 38.1), то количество волн на длине L известно с точностью порядка ± 1. Но число волн на длине L равно kL/2p. Значит, неопределенность в k равна 2p/L . Опять получилась формула (38.7) как простое свойство всяких волн. Это остается верным всегда: и для волн в пространстве, когда k есть количество радиан на 1 см, a L — длина цуга, и для волн во времени, когда w есть число колебаний в 1 сек, а Т — «длина» во времени того же цуга. Иначе говоря, если цуг волн длится только конечное вре­мя Т, то неопределенность в частоте дается формулой



(38.8)

Мы все время старались подчеркнуть, что это свойство самих волн, что все это хорошо известно, например в теории звука. А квантовомеханические применения этих свойств опи­раются на толкование волнового числа как меры импульса час­тицы по правилу р=hk, так что (38.7) уже утверждает, что Dр»h/Dx. Это устанавливает предел классическому представ­лению об импульсе. (Естественно, оно и должно быть как-то подвергнуто ограничению, если мы собираемся изображать частицы как волны!) И очень хорошо, что мы нашли правило, которое каким-то образом берется указать, где нарушаются классические представления.

§ 3. Дифракция на кристалле

Теперь рассмотрим отражение волн вещества от кристалла. Кристалл — это твердое тело, состоящее из множества одина­ковых атомов, расположенных стройными рядами. Как можно расположить этот строй атомов, чтобы, отражая в данном на­правлении данный пучок света (рентгеновских лучей), электро­нов, нейтронов, чего угодно, получить сильный максимум? Чтобы испытать сильное отражение, лучи, рассеянные от всех атомов, должны быть в фазе друг с другом. Не может быть так, чтобы точно половина волн была в фазе, а половина — в противофазе, тогда все волны исчезнут. Нужно, стало быть, найти поверхности постоянной фазы; это, как мы уже объясняли раньше, плоскости, образующие равный угол с начальным и конечным направлениями (фиг. 38.4).

Если мы рассмотрим две параллельные плоскости, как по­казано на фиг. 38.4, то волны, рассеянные на них, окажутся в фазе только тогда, когда разность расстояний, пройденных фронтом волны, будет равна целому числу длин волн. Эта раз­ность, как легко видеть, равна 2dsinq, где d — расстояние между плоскостями. Итак, условие когерентного отражения имеет вид



(n=1, 2, ...). (38.9)

Если, скажем, кристалл таков, что атомы в нем укладывают­ся на плоскостях, удовлетворяющих условию (38.9) с n=1, то будет наблюдаться сильное отражение. Если, с другой сто­роны, существуют другие атомы той же природы (и располо­женные с той же плотностью) как раз посередине между слоя­ми, то на этих промежуточных плоскостях произойдет рассея­ние равной силы; оно интерферирует с первым и погасит его. Поэтому d в выражении (38.9) должно означать расстояние между примыкающими плоскостями; нельзя взять две плоскости, разделенные пятью слоями, и применить к ним эту формулу!



Фиг. 38.4. Рассеяние волн плоскостями кристалла.



Фиг. 38.5. Дифракция рентге­новских лучей на кристаллах каменной соли.



Интересно, что настоящие кристаллы обычно не столь прос­ты,— это не одинаковые атомы, повторяющиеся по определен­ному закону. Они скорее похожи, если прибегнуть к двумер­ной аналогии, на обои, на которых повторяется один и тот же сложный узор. Для атомов «узор» — это некоторая их расста­новка, куда может входить довольно большое число атомов; скажем, для углекислого кальция — атомов кальция, углеро­да и трех атомов кислорода. Важно не то, каков рисунок, а то, что он повторяется.

Этот основной рисунок называется ячейкой, а способ пов­торения определяет тип решетки; тип решетки можно сразу определить, взглянув на отражения и рассмотрев их симметрию. Другими словами, от типа решетки зависит, где не будет отра­жения (лучей от кристалла), но чтобы узнать, что стоит в каж­дой ячейке, надо учесть и интенсивность рассеяния по тем или иным направлениям. Направления рассеяния зависят от типа ре­шетки, а сила рассеяния определяется тем, что находится внутри каждой ячейки; этим способом и было изучено строение крис­таллов.

Две фотографии дифракции рентгеновских лучей даны на фиг. 38.5 и 38.6.

Занятная вещь получается с рассеянием, когда промежутки между ближайшими плоскостями меньше l/2. В этом случае уравнение (38.9) вообще не имеет решений ни для одного п. Выходит, когда l больше двойного промежутка между примы­кающими плоскостями, то никаких боковых дифракционных пятнышек нет и свет (и не только свет, а все, что хотите) прямо проходит через вещество.





Фиг. 38.6. Дифракция рентгеновских лучей на миоглобине.





Фиг. 38.7. Диффузия нейтронов из котла сквозь графитовый блок



Проходит, не отражаясь, не рассеи­ваясь, не теряясь. В частности, свет (у него l много больше этих промежутков) проходит, не давая никакой картины отра­жений от кристаллических плоскостей.

Интересные следствия этого явления наблюдаются в урано­вых реакторах — источниках нейтронов (нейтроны — это, уж бесспорно, частицы, спросите у кого угодно!). Если пустить эти самые частицы-нейтроны через длинный блок графита, то они начнут рассеиваться и с трудом будут протискиваться в глубь блока (фиг. 38.7). Рассеиваются они из-за того, что отскакивают от атомов. Но строго говоря, согласно волновой теории, все обстоит как раз наоборот — они отскакивают от ато­мов из-за дифракции от кристаллических плоскостей. Оказывает­ся, что если взять длинный стержень графита, то у всех нейт­ронов, выходящих из его дальнего конца, окажется большая длина волны! Если нанести на график интенсивность нейтро­нов как функцию длины волны, то на нем изобразятся только длины волн выше некоторого минимума (фиг. 38.8). Значит, таким путем можно получить очень медленные нейтроны. Про­никают сквозь графит только самые медленные нейтроны, они не дифрагируют, не рассеиваются на кристаллических плоскос­тях графита, а спокойно проходят, как свет через стекло. И нет никакого рассеяния по сторонам. Существует и множество других доказательств реальности нейтронных волн и волн других частиц.





Фиг. 38.8. Интенсивность нейтро­нов, выходящих us стержня гра­фита, как функция длины волны.

§ 4. Размер атома

Рассмотрим еще одно применение принципа неопределен­ности (38.3), но только, пожалуйста, не воспринимайте этот расчет чересчур буквально; общая мысль правильна, но ана­лиз проделан не очень аккуратно. Мысль эта касается опре­деления размера атомов; ведь по классическим воззрениям электроны должны были бы излучать свет и, крутясь по спирали, упасть на поверхность ядра. Но, согласно кван­товой механике, это невозможно, потому что в противном случае мы бы знали, где очутился электрон и насколько быстро он вертится.

Допустим, имеется атом водорода и мы измеряем положение электрона; мы не должны быть в состоянии предвидеть точно, где он окажется, иначе расплывание импульса станет беско­нечным. Всякий раз, как мы смотрим на электрон, он где-ни­будь оказывается; у него есть амплитуда вероятности оказаться в различных местах, так что есть вероятность найти его где угодно. Однако не все эти места должны быть возле самого ядра; положим, что существует разброс в расстояниях поряд­ка а, т. е. расстояние от ядра до электрона примерно в сред­нем равно а. Определим а, потребовав, чтобы полная энергия атома оказалась минимальной.

Разброс в импульсах, в согласии с соотношением неопре­деленностей, должен быть равен примерно h/а; поэтому, стре­мясь измерить как-нибудь импульс электрона (например, рас­сеивая на нем фотоны и наблюдая эффект Допплера от движу­щегося рассеивателя), мы не будем получать все время нуль (электрон не стоит на месте), а будем получать импульсы поряд­ка р»h/а. Кинетическая энергия электронов примерно будет равна 1/2mv2 = Р2/2m = h2/2ma2. (To, что мы сейчас делаем, в каком-то смысле есть анализ размерностей: мы прикидываем, как кинетическая энергия может зависеть от постоянной План­ка h, массы т и размера атома а. Ответ получается с точностью до численных множителей типа 2, p и т. д. Мы даже не опреде­лили как следует а.) Далее, потенциальная энергия равна част­ному от деления минус е2 на расстоянии от центра, скажем, — е2/а (как мы помним, е2 — это квадрат заряда электрона, деленный на 4pe0). Теперь смотрите: когда а уменьшается, то потенциальная энергия тоже уменьшается, но чем меньше а, тем больше требуемый принципом неопределенности импульс и тем больше кинетическая энергия. Полная энергия равна



(38.10)

Мы не знаем, чему равно а, но зато мы знаем, что атом, обеспечивая свое существование, вынужден идти на компромисс, с тем чтобы полная энергия его была как можно меньше. Чтобы найти минимум Е, продифференцируем его по а, по­требуем равенства производной нулю и найдем а. Производ­ная Е равна



(38.11)



Уравнение dE/da=0 дает для а величину

(38.12)

Это расстояние называется воровским радиусом, и мы видим, что размеры атома — порядка ангстрема. Получилась пра­вильная цифра. Это очень хорошо, это даже удивительно хорошо, ведь до сих пор никаких теоретических соображений о размере атома у нас не было. С классической точки зрения атомы попросту невозможны: электроны должны упасть на ядра. Подставив формулу (38.12) для а0 в (38.10), мы найдем энер­гию. Она оказывается равной



(38.13)

Что означает отрицательная энергия? А то, что, когда электрон находится в атоме, у него энергии меньше, чем когда он свобо­ден. Иначе говоря, в атоме он связан. И нужна энергия, чтобы вырвать его из атома; для ионизации атома водорода требуется энергия 13,6 эв. Не исключено, конечно, что потребуется вдвое или втрое больше энергии, или в p раз меньше, так как расчет наш был очень неряшлив. Однако мы схитрили и выб­рали все константы так, чтобы итог получился абсолютно пра­вильным! Эта величина -13,6 эв — называется ридбергом энергии; это энергия ионизации водорода.

Только теперь становится понятным, отчего мы не провали­ваемся сквозь пол. При ходьбе вся масса атомов наших боти­нок отталкивается от пола, от всей массы его атомов. Атомы сминаются, электроны вынуждены тесниться в меньшем объе­ме, и по принципу неопределенности их импульсы в среднем увеличиваются, а увеличение импульсов означает рост энер­гии. Сопротивление атомов сжатию — это не классический, а квантовомехаиический эффект. По классическим понятиям следовало ожидать, что при сближении электронов с прото­нами энергия уменьшится; наивыгоднейшее расположение по­ложительных и отрицательных зарядов в классической физи­ке — это когда они сидят верхом друг на друге. Классической физике это было хорошо известно и представляло загадку: ато­мы-то все же существовали! Конечно, ученые и тогда придумы­вали разные способы выхода из тупика, но правильный (будем надеяться!) способ стал известен только нам!

Кстати, когда вокруг ядра бывает много электронов, то они тоже стараются держаться подальше друг от друга. При­чина этого пока вам непонятна, но это факт, что если какой-то электрон занял какое-то место, то другой этого места уже не займет. Точнее, из-за существования двух направлений спи­на, эти электроны могут усесться друг на друга и вертеться: один — в одну сторону, другой — в другую. Но уже никакого третьего на это место вам не поместить. Вы должны их поме­щать на новые места, и в этом-то истинная причина того, что вещество обладает упругостью. Если бы можно было помещать все электроны в одно место, вещество было бы даже плотней, чем обычно. И именно благодаря тому, что электроны не могут сидеть друг на друге, существуют и столы, и другие твердые предметы.

Естественно поэтому, что, желая понять свойства вещества, нужно пользоваться квантовой механикой; классической для этого явно недостаточно.

§ 5. Уровни энергии

Мы говорили уже об атоме в наинизшем возможном энерге­тическом состоянии. Но оказывается, что электрон способен и на многое другое. Он может вращаться и колебаться гораздо энергичней, возможности его движений в атоме довольно мно­гообразны. Согласно квантовой механике, при установивших­ся условиях движения атом может обладать только вполне опре­деленными энергиями. На диаграмме фиг. 38.9 мы будем от­кладывать энергии по вертикали, а горизонтальными линиями отмечать разрешенные значения энергии. Когда электрон сво­боден, т. е. когда его энергия положительна, она может быть любой; скорость электрона тоже может быть какой угодно. Но энергии связанных состояний не произвольны. Атом мо­жет иметь только ту или иную энергию из дозволенной сово­купности значений, скажем, таких, как на фиг. 38.9.





Обозначим эти разрешенные значения через Е0 , E1 , E2 , Е3 . Если первоначально атом находится в одном из этих «возбуж­денных» состояний E1, E2 и т. д., он не останется в нем навсег­да. Раньше или позже он упадет в низшее состояние и излучит при этом энергию в виде света. Частота испущенного света определяется требованием сохранения энергии плюс квантовомеханическим пониманием того, что частота света связана с энергией света условием (38.1).

Фиг. 38.9. Схема энергий атома. Показано несколько возможных переходов.

Поэтому, например, частота света, освобожденного в переходе от энергии Е3 к энергии E1 , равна



(38.14)

Эта частота характерна для данного сорта атомов и определяет линию в спектре испускания. Возможен и другой переход — от E3 к Е0 . У него своя частота:



(38.15)

Еще одна возможность заключается в том, что если атом воз­бужден до состояния E1, то он может упасть в основное состоя­ние е0, излучая фотон с частотой



(38.16)



Мы привели здесь эти три перехода для того, чтобы подчеркнуть интересную связь между ними. Из трех формул (38.14), (38.15), (38.16) легко получить

(38.17)

Вообще, обнаружив две линии в спектре, можно ожидать, что найдется и линия с частотой, равной сумме (или разности) частот. Все линии можно объяснить, отыскав серию уровней, таких, что каждая линия соответствует разности энергий меж­ду какими-то двумя уровнями. Это замечательное совпадение между частотами линий в спектре было замечено еще до откры­тия квантовой механики. Его называют комбинационным прин­ципом Ритца. С точки зрения классической механики он опять выглядит таинственно. Впрочем, не будем больше напоминать о том, что классическая механика обанкротилась в мире ато­мов; мне кажется, мы это уже хорошо показали.

Мы говорили уже о том, что в квантовой механике все собы­тия представляются в виде амплитуд, которые ведут себя как волны, имеют определенную частоту и волновое число. Посмот­рим теперь, как при помощи амплитуд объяснить, что у атома бывают только определенные энергетические состояния. Из всего, что было сказано до сих пор, это вывести и понять невоз­можно. Но зато мы все знаем, что волны в ограниченном объеме обладают определенными частотами. Скажем, если звуковая волна ограничена пределами органной трубы или как-либо иначе, то звуковые колебания могут быть разными, но их ча­стоты не могут быть любыми. И так всегда: у тела, внутри которого держатся волны, всегда бывают определенные резонанс­ные частоты. Волны, заключенные в ограниченный объем, всег­да обладают лишь определенным набором частот. (В дальней­шем мы еще будем изучать это явление и выпишем все нужные формулы.) Ну, а поскольку существует общее соотношение между частотой колебаний амплитуды и энергией, то нет ниче­го удивительного в том, что электроны, связанные в атомах, обладают только вполне определенными энергиями.

§ 6. Немного философии

Поговорим еще немного о философии квантовой механики. Как и всегда, здесь есть две стороны: философское содержание физики и его экстраполяция на другие области знаний. Когда философские идеи, связанные с наукой, переносятся на другие области, они обычно при этом искажаются до неузнаваемости. Поэтому мы ограничим свои замечания, насколько это возмож­но, только физикой.

Прежде всего начнем с самого интересного предмета — с идеи принципа неопределенности: наблюдение воздействует на явле­ние. Хоть и всегда было известно, что, наблюдая явление, мы воздействуем на него, но здесь суть-то в том, что этим воздейст­вием нельзя пренебречь, нельзя его свести до нуля, нельзя переделкой прибора произвольно уменьшить это влияние. Наблюдая явление, нельзя хотя бы слегка не нарушить его ход, и без учета этого нарушения теория не может стать после­довательной. И в доквантовой физике наблюдатель иногда был важен, но лишь в довольно тривиальном смысле. Рассматривал­ся, скажем, такой вопрос: дерево падает в лесу, в котором нет никого, кто мог бы услышать это; вызовет ли падение шум? И следовал ответ: настоящее дерево, падая в настоящем лесу, бесспорно, шум вызовет, даже если никого поблизости нет. Пусть никто падения слышать не мог, все равно останутся другие следы — кое-где осыплются листья, а на некоторых листочках останутся едва заметные царапинки от колючек, которые можно будет объяснить лишь тем, что листва дро­жала. Так что следует допустить, что в некотором смысле звук и впрямь существовал. «Но было ли ощущение зву­ка?» — можем мы спросить. Нет, для ощущения, видимо, нуж­но и сознание. А есть ли сознание у муравьев, да и водятся ли они в этом лесу и сознают ли что-либо деревья — вопрос темный. Поэтому бросим эту задачу.

С тех пор как родилась квантовая механика, стали подчер­кивать и другое положение: не надо говорить о вещах, которые невозможно измерить. (Кстати, и теория относительности го­ворила об этом же.) Пока не определено, как измерять величи­ну, ей нет места в теории. А поскольку точное значение импульса локализованной (находящейся в каком-то месте) частицы не может быть определено при помощи измерения, значит, импуль­су нечего делать в теории.

Так вот, если вы думаете, что классическая теория потому и погибла, вы ошибаетесь. Было бы легкомысленно сделать такой вывод. Невозможность точного измерения координаты и одновременно импульса не означает априори, что нельзя о них говорить, а означает только, что говорить о них нет необ­ходимости. На самом деле в науках бывает иначе: идея или понятие, которые невозможно прямо связать с опытом или замерить, могут быть полезными, а могут быть бесполезными. О них можно только сказать что они не обязаны присутствовать в теории. Пусть, например, мы сравниваем классическую тео­рию мира с квантовой теорией, а из эксперимента следует, что координата и импульс могут измеряться лишь неточно. Мы спрашиваем себя, имеет ли смысл понятие точного положения частицы или точного ее импульса. Классическая теория отве­чает «да», а квантовая — «нет». Но это само по себе не означает, что классическая физика ошибается.

Когда была открыта новая, квантовая, механика, привер­женцы классической теории, т. е. все физики, кроме Гейзенберга, Шредингера и Борна, говорили: «Что же хорошего в ней, в вашей теории, раз она не может ответить на простейшие вопросы: каково точное положение частицы? Через какую щель она проскочит? и другие». Ответ Гейзенберга гласил: «Я не обя­зан отвечать на такие вопросы, ибо вы не можете их задать эк­спериментально». Иначе говоря, отвечать — означало бы делать то, что делать необязательно. Рассмотрим две теории, (А) и (Б). Теория (А) содержит в себе идею, которую нельзя прове­рить непосредственно, но которая используется в анализе; теория (Б) этой идеи не содержит. Если их предсказания рас­ходятся, то нельзя утверждать, что теория (Б) ошибочна на том основании, что она не может объяснить идею из теории (А); ведь эта идея как раз из тех вещей, которые нельзя непосред­ственно проверить.

Ну что ж! Хорошо, конечно, знать, какие из идей экспери­ментальной проверке не поддаются, но нет необходимости от­брасывать их все. Неверно же, что науку можно создавать толь­ко из тех понятий, которые прямо связаны с опытом. Ведь в самой квантовой механике есть и амплитуда волновой функции, и потенциал, и многие другие умственные построения, не под­дающиеся прямому измерению. Основа науки — в ее способ­ности предвидеть. Предвидеть — это значит сообщать, что слу­чится в опыте, который никогда прежде не ставился. Как этого можно добиться? Предполагая, что мы независимо от экспери­мента знаем, что произойдет, мы экстраполируем опыт, выво­дим его в область, в которой он не ставился. Мы расширяем свои представления до пределов, в которых они никогда не проверялись. Если этого не сделано — никакого предсказания нет. Поэтому вполне разумно было когда-то физику-классику в счастливом неведении предполагать, что понятие положения, бесспорно имеющее смысл в футболе, имеет какой-то смысл и для электрона. Это была не глупость. Это была разумная про­цедура. А теперь мы, например, говорим, что закон относитель­ности верен при любых энергиях, а ведь в один прекрасный день явится кто-нибудь и объяснит, насколько мы глупы. Мы не догадаемся, в каком месте мы совершаем «глупость», покуда не «вырастем над собой»; вся проблема сводится к тому, как и когда нам это удастся. Единственный же способ обнаружить, в чем мы ошибаемся, это понять, в чем состоят наши предсказания. Так что без умственных построений не обойтись.

Мы уже делали ряд замечаний о недетерминированности квантовой механики, т. е. о том, что она не способна предсказы­вать, что произойдет в данных физических условиях, как бы аккуратно они ни были на опыте осуществлены. Если атом находится в возбужденном состоянии, собираясь излучить фо­тон, мы не можем сказать, когда это случится; существует ко­нечная амплитуда вероятности испустить фотон в любой момент, и только эту вероятность мы и можем предвидеть. Мы не можем точно предсказывать будущее. На этой основе и высказываются разного рода глупости о неопределенности всех явлений в мире, возникают вопросы о свободе воли частиц и т. д.

Следует, конечно, подчеркнуть, что и классическая физика была в каком-то смысле недетерминированной. Обычно думают, что недетерминированность, невозможность предсказать бу­дущее — это особенность квантовой механики, и именно с ней связывают возникновение представлений о свободе воли и т. д. Но если бы даже наш мир был классическим, т. е. если бы законы механики были классическими, все равно из этого не следует, что те же или какие-то аналогичные представления не возникли бы. Да, конечно, с точки зрения классики, узнав местоположе­ние и скорость всех частиц в мире (или в сосуде с газом), можно точно предсказать, что будет дальше. В этом смысле классичес­кий мир детерминирован. Но представьте теперь, что наша точ­ность ограничена и что мы не знаем точно положение только одного из атомов; знаем, скажем, его с ошибкой в одну миллиар­дную. Тогда если он столкнется с другим атомом, неопреде­ленность в знании его координат после столкновения возрастет. А следующее столкновение еще сильней увеличит ошибку. Так что если сначала ошибка и была еле заметной, то все равно вскоре она вырастет до огромнейшей неопределенности. Вот вам пример: вода, падая с плотины, брызжет во все стороны. Подойдите поближе, и на ваш нос тоже упадет нес­колько брызг. Это кажется совершеннейшей случайностью, хотя поведение воды может быть предсказано на основе чисто классических законов. Точное положение всех капель зависит от мельчайших колебаний потока воды перед плотиной. Но как оно зависит? Еле заметные нерегулярности в падении воды усиливаются и приводят к полной случайности движений. Ясно, что мы не можем по-настоящему предвидеть положение капель, если не знаем движения воды абсолютно точно.

Правильнее будет сказать, что для данной точности (сколь угодно большой, но конечной) можно всегда указать такой боль­шой промежуток времени, что для него становится невозмож­ным сделать предсказания. И этот промежуток (в этом вся соль) не так уж велик. Он не равен миллиону лет при точности в одну миллиардную! Время с уменьшением ошибки растет толь­ко логарифмически, и оказывается, что за очень и очень малое время вся наша информация теряется. Если точность равна даже одной миллиард-миллиард-миллиардной (ставьте сколько угодно миллиардов, но только когда-нибудь остановитесь!), все равно можно указать промежуток времени, меньший чем время, нужное для того, чтобы произвести измерения с такой огромной точностью, после которого уже невозможно будет предугадывать, что случится! Поэтому нечестно говорить, что уже в видимой свободе и недетерминированности человеческого мышления мы видим доказательства невозможности его изуче­ния в рамках классической «детерминистской» физики и приветствовать квантовую механику как избавительницу нашего духа от «абсолютно механистической» Вселенной. С практиче­ской точки зрения «детерминизм» отсутствовал и в классиче­ской механике.