Вспомните теперь, что количественную связь между I
1, I
2 и I
12 можно выразить следующим образом: мгновенная высота волны в детекторе от щели 1 может быть представлена в виде (действительной части) h’
1e
iwt, где «амплитуда» h’
1, вообще говоря, комплексное число. Интенсивность пропорциональна среднему квадрату высоты, или, пользуясь комплексными числами, |h’
1|
2. Высота волн от щели 2 тоже равна h
2e
iwt, а интенсивность пропорциональна |h’
2|
2. Когда обе щели открыты, высоты волн складываются, давая высоту (h’
1+h’
2)e
iwt
и интенсивность |h1+h2|2. Множитель пропорциональности нас сейчас не интересует, так что формулу для интерферирующих волн можно записать в виде
Вы видите, что ничего похожего на то, что было с пулями, не получается. Раскрыв h1+h2|2, мы напишем
где d-—разность фаз между h1 и h2 . Вводя интенсивности из (37.2), можем написать
Последний член и есть «интерференционный член».
На этом мы покончим с волнами. Интенсивность их может быть любой, между ними возникает интерференция.
§ 4. Опыт с электронами
Представим себе теперь такой же опыт с электронами. Схема его изображена на фиг. 37.3. Мы поставим электронную пушку, которая состоит из вольфрамовой проволочки, нагреваемой током и помещенной в металлическую коробку с отверстием. Если на проволочку подано отрицательное напряжение, а на коробку — положительное, то электроны, испущенные проволокой, будут разгоняться стенками и некоторые из них проскочат сквозь отверстие. Все электроны, которые выскочат из пушки, будут обладать (примерно) одинаковой энергией. А перед пушкой мы поставим снова стенку (на этот раз тонкую металлическую пластинку) с двумя дырочками
Фиг. 37.3. Опыт с электронами.
За стенкой стоит другая пластинка, она служит «земляным валом», поглотителем. Перед нею — подвижный детектор, скажем счетчик Гейгера, а еще лучше — электронный умножитель, к которому подсоединен динамик.
Заранее предупреждаем вас: не пытайтесь проделать этот опыт (в отличие от первых двух, которые вы, быть может, уже проделали). Этот опыт никогда никто так не ставил. Все дело в том, что для получения интересующих нас эффектов прибор должен быть чересчур миниатюрным. Мы с вами ставим сейчас «мысленный эксперимент», отличающийся от других тем, что его легко обдумать. Что должно в нем получиться, известно заранее, потому что уже проделано множество опытов на приборах, размеры и пропорции которых были подобраны так, чтобы стал заметен тот эффект, который мы сейчас опишем.
Первое, что мы замечаем в нашем опыте с электронами, это резкие «щелк», «щелк», доносящиеся из детектора (вернее, из динамика). Все «щелк» одинаковы. Никаких «полущелков».
Мы замечаем также, что они следуют совершенно не регулярно. Скажем, так: щелк..... щелк-щелк... щелк.........
щелк .... щелк-щелк ... ... щелк ... и т. д. Кому случалось видеть
счетчик Гейгера, знает, как он щелкает. Если подсчитать, сколько раз динамик щелкнул за достаточно длительное время (скажем, за несколько минут), а потом снова подсчитать, сколько он отщелкал за другой такой же промежуток времени, то оба числа будут почти одинаковыми. Можно поэтому говорить о средней частоте, с которой слышатся щелчки (столько-то «щелк» в минуту в среднем).
Когда мы переставляем детектор, частота щелчков то растет, то падает, но величина (громкость) каждого «щелк» всегда остается одной и той же. Если мы охладим проволоку в пушке, частота щелчков спадет, но каждый «щелк» будет звучать, как прежде. Поставим у поглотителя два отдельных детектора; тогда мы сразу заметим, что щелкает то один из них, то другой, но никогда оба вместе. (Разве что иногда наше ухо не разделит двух щелчков, последовавших очень быстро один за другим.) Мы заключаем поэтому, что все, что попадает в детектор, приходит туда «порциями». Все «порции» одной величины; в детектор (или поглотитель) попадает только целая «порция»; в каждый момент в поглотитель попадает только одна порция, Мы говорим: «Электроны всегда приходят одинаковыми порциями».
Как и в опыте со стрельбой из пулемета, мы попытаемся теперь поискать в новом опыте ответ на вопрос: «Какова относительная вероятность того, что электронная «порция» попадет в поглотитель на разных расстояниях х от середины?» Как и в том опыте, мы получим относительную вероятность, подсчитывая частоту щелчков при стабильно работающей пушке. Вероятность, что порции окажутся на определенном расстоянии х, пропорциональна средней частоте щелчков при этом х. В результате нашего опыта получена интереснейшая кривая p12, изображенная на фиг. 37.3,в. Да! Именно так и ведут себя электроны!
§ 5. Интерференция электронных волн
Попытаемся проанализировать кривую на фиг. 37.3 и посмотрим, сможем ли мы понять поведение электронов. Первое, что хочется отметить, это что раз они приходят порциями, то каждая из порций (ее тоже естественно именовать электроном) проходит либо сквозь отверстие 1, либо сквозь отверстие 2. Мы зафиксируем это в виде «Утверждения».
Утверждение А; Каждый электрон проходит либо сквозь отверстие 1, либо сквозь отверстие 2.
Если это предположить, то все электроны, достигшие поглотителя, можно разбить на два класса: 1) проникшие сквозь отверстие 1; 2) проникшие сквозь отверстие 2. Значит, полученная кривая — это сумма эффектов от электронов, прошедших сквозь отверстие 1, и электронов, прошедших сквозь отверстие 2. Давайте проверим это соображение экспериментально. Сначала проведем измерения с электронами, которые пройдут сквозь отверстие 1. Закроем отверстие 2 и подсчитаем щелчки в детекторе. Из частоты щелчков мы получим значение P1. Результат измерений показан на кривой pi фиг. 37.3,б. Выглядит это вполне разумно. Точно таким же образом измерим p2 — распределение вероятностей для электронов, прошедших сквозь отверстие 2. Оно тоже показано на рисунке.
Кривая P12, полученная, когда оба отверстия открыты, явным образом не совпадает с суммой P1 + P2 (суммой вероятностей при только одном работающем отверстии). По аналогии с нашим опытом с волнами на воде мы скажем: «Здесь есть интерференция»:
Для электронов: Р12 №Р1-\\-Р2 . (37.5)
Откуда же могла появиться интерференция? Может, надо ·сказать так: «То, что порции проходят либо сквозь отверстие 1, либо сквозь отверстие 2,— это, по-видимому, неверно, ведь если бы это было так, то складывались бы вероятности. Должно быть, их движение сложней. Они разбиваются пополам и...» Да нет же! Это невозможно, они ведь всегда приходят целыми порциями... «Ну ладно, тогда может кое-кто из них, пройдя сквозь отверстие 1, заворачивает в 2, а после опять в 1, и так несколько раз, или еще как-то бродит по обоим отверстиям.
Тогда, закрыв отверстие 2, мы отрежем им путь и изменим вероятность того, что электрон, выйдя из отверстия 1, попадет в конце концов в поглотитель...» Но посмотрите-ка! Ведь есть такие точки на кривой, в которые при обоих открытых отверстиях попадает очень мало электронов, а при одном закрытом отверстии их попадает гораздо больше. Выходит, закрытие одного отверстия увеличивает число электронов, проходящих через другое. И наоборот, середина кривой P12 более чем вдвое превышает сумму P1+P2. Здесь, закрыв одно отверстие, вы тем самым уменьшаете число электронов, проходящих сквозь другое. Объяснить оба эффекта, предполагая, что электроны блуждают по сложным траекториям, пожалуй, довольно трудно.
Все это выглядит весьма таинственно. И тем таинственней, чем больше об этом думаешь. Идей, объясняющих кривую Р12 как результат сложного движения отдельных электронов через оба отверстия, было сфабриковано немало. Но ни одна из этих попыток не была успешной. Ни одна не смогла выразить Р12 через P1 и Р2 .
При этом, как ни странно, математика, связывающая P1 и Р2 с P12, проста до чрезвычайности. Ведь кривая P12 ничем не отличается от кривой I12 на фиг. 37.2, а последнюю-то получить очень просто. То, что приближается к поглотителю, может быть описано двумя комплексными числами j1 и j2 (это функции от х). Квадрат абсолютной величины j1 дает эффект от одного отверстия 1: P1=|j1|2. Эффект, полученный при открытом отверстии 2, точно таким же образом получается из j2, т. е. Р2=|j212. А общее действие обоих отверстий выразится в виде P12=|j1+j2|2. Выкладки абсолютно те же, что и для волн на воде! (А попробуйте-ка, кстати, получить такой простой результат, считая, что электроны шныряют взад и вперед сквозь пластинку по необычным траекториям.)
В конце концов мы приходим к следующему заключению: электроны приходят порциями, подобно частицам, а вероятность прибытия этих порций распределена так же, как и интенсивность волн. Именно в этом смысле электрон и ведет себя «частично как частица, а частью как волна».
Заметим, кстати, что, имея дело с классическими волнами, мы определили интенсивность как среднее по времени от квадрата амплитуды волны и применили комплексные числа как математический прием, облегчающий расчеты. Но в квантовой механике амплитуды обязаны представляться комплексными числами. Одной только действительной части амплитуд недостаточно. Пока, впрочем, это выглядит лишь как техническая подробность, потому что формулы с виду одни и те же.
А поскольку вероятность прохода сквозь оба отверстия выражается столь просто (хотя и не равна сумме P1+Р2), то больше по этому поводу сказать нечего. Но имеется еще множество тонкостей, связанных с таким поведением природы. Хотелось бы рассказать о некоторых из них. Во-первых, раз число частиц, достигающих определенной точки, не равно числу прохождений сквозь отверстие 1 плюс число прохождений через отверстие 2 (как этого можно было ожидать, основываясь на «Утверждении А»), то, несомненно, «Утверждение А» неверно. Неверно, что электроны проходят либо сквозь отверстие 1, либо сквозь отверстие 2. Но этот вывод можно проверить и иначе.
§ 6. Как проследить за электроном?
Попытаемся проделать такой опыт. В наш электронный прибор как раз за стенкой между двумя отверстиями поместим сильный источник света (фиг. 37.4). Известно, что электрические заряды рассеивают свет. Поэтому, каким бы путем электрон ни прошел к детектору, он обязательно рассеет немного света в наш глаз, и мы увидим, где он проскочил. Скажем, если он проскользнет сквозь отверстие 2, как это показано на рисунке, то мы увидим, как где-то около точки А что-то блеснуло. Если же он проскочит сквозь верхнее отверстие, то блеснет где-то поблизости от отверстия 1. А если бы случилось так, что свет блеснет сразу в двух местах, потому что электрон разделился пополам, то ... Но лучше приступим к опыту!
Вот что мы увидим: всякий раз, когда мы слышим из детектора «щелк», мы также видим вспышку света или у отверстия 1, или у отверстия 2, но никогда у обоих отверстий сразу! Так происходит при любом положении детектора. Отсюда мы делаем вывод, что когда мы смотрим на электрон, то обнаруживаем, что он проходит или через одно отверстие, или через другое.
Фиг. 37.4. Другой опыт с электронами.
«Утверждение А», как показывает эксперимент, выполняется с необходимостью.
Что же в таком случае неверно в наших доводах против правильности «Утверждения А»? Почему же все-таки P12 не равно P1+Р2? Продолжим наш опыт! Давайте проследим за электронами и посмотрим, что они поделывают. Для каждого положения детектора (для каждого фиксированного х) мы подсчитаем, сколько электронов в него попало, и одновременно проследим (наблюдая вспышки), через какие отверстия они прошли. Следить мы будем так: услышав «щелк», мы поставим палочку в первом столбце, если заметим вспышку у первого отверстия; если же вспышка блеснет у отверстия 2, то мы отметим это палочкой во второй колонке. Каждый попадающий в детектор электрон будет отнесен к одному из двух классов: либо к классу электронов, проникших сквозь отверстие 1, либо к классу электронов, проникших сквозь отверстие 2. Количество палочек, накопившихся в первой колонке, даст нам р1 — вероятность того, что электрон пройдет к детектору сквозь отверстие 1; точно так же вторая колонка даст Р\'2 — вероятность того, что электрон воспользовался отверстием 2. Повторив эти измерения для многих значений х, мы получим кривые р\'1 и Р\'2, показанные на фиг. 37.4,б.
Ну что ж, ничего неожиданного в них нет! Кривая P\'1 вышла похожей на кривую P1, которая получалась, когда отверстие 2 закрывали, а кривая P\'2 похожа на то, что мы получали, когда закрывали отверстие 1. Итак, никаких блужданий от дырки к дырке не существует. Когда мы следим за электронами, то оказывается, что они проникают сквозь стенку со щелями в точности так, как мы ожидали. Закрыты ли отверстия или открыты, все равно те электроны, которые мы видели проникающими сквозь отверстие 1, распределены одинаково.
Но погодите! Какова же теперь полная вероятность — вероятность того, что электрон попал в детектор любым путем? У нас уже есть сведения об этом. Сделаем вид, что мы не замечали световых вспышек, т. е. сложим палочки, стоящие в обеих колонках. Нам нужно только сложить числа. Для вероятности того, что электрон попал в поглотитель, пройдя через любое из отверстий, мы действительно получим Р\'12 = P1+P2. Выходит, что, хоть нам и удалось проследить, через какое отверстие проходят электроны, никакой прежней интерференционной кривой P12 не вышло, получилась новая кривая Р\'12 — кривая без интерференции! А выключите свет — и снова возникнет Р12.
Мы приходим к заключению, что, когда мы смотрим на электроны, распределение их на экране совсем не такое, как тогда, когда на них не смотрят. Уж не от включения ли света меняется ход событий? Должно быть, электроны — вещь очень деликатная; свет, рассеиваясь на электронах, толкает их и меняет их движение. Мы ведь знаем, что электрическое поле, действуя на заряд, прилагает к нему силу. От этого, по-видимому, и следует ожидать изменения движения. Во всяком случае, свет оказывает на электроны большое влияние. Пытаясь «проследить» за электронами, мы изменили их движение. Толчки, испытываемые электронами при рассеянии фотонов, очевидно, таковы, что движение электронов сильно изменяется: электрон, который прежде мог попасть в максимум P12 , теперь приземляется в минимуме Р12; вот поэтому никакой интерференции и не заметно.
«Но к чему же такой яркий источник света? — можете вы подумать.— Сбавьте яркость! Световые волны ослабнут и не смогут так сильно возмущать электроны; ослабляя свет все больше и больше, можно в принципе добиться того, что воздействием света на электрон можно будет вообще пренебречь». Будь по-вашему. Давайте попробуем.
Первое, что мы замечаем, это что блеск света, рассеянного на электронах, не слабеет. Сила вспышек остается прежней. От того, что свет стал тускнеть, изменилось лишь одно: временами, услышав щелчок детектора, мы никакой вспышки не замечаем; электрон прошел незамеченным. Мы просто обнаруживаем, что свет ведет себя так же, как электроны: мы знаем, что он «волнист», а теперь убеждаемся, что он к тому же распространяется «порциями». Он доставляется—или рассеивается — порциями, которые мы называем «фотонами». Понижая интенсивность источника света, мы не меняем величины фотонов, а меняем только темп, с каким они испускаются. Этим и объясняется, почему при притушенном свете некоторые электроны проскальзывают к детектору незаметно. Просто как раз в тот момент, когда электрон двигался к детектору, фотона в нужном месте не оказалось.
Все это немного нас обескураживает. Если правильно, что всякий раз, когда мы «видим» электрон, получаются одинаковые вспышки, то все увиденные нами до сего времени электроны были возмущенными электронами. Давайте тогда опыт с тусклым светом проведем иначе. Теперь, услышав щелчок в детекторе, мы будем ставить палочку в одну из трех колонок: в первую, если электрон замечен у отверстия 1, во вторую, если его видели у отверстия 2, и в третью, если его вообще не видели. Обработав данные (рассчитав вероятности), мы получим следующие результаты: «виденные у отверстия 1» будут распределены по закону P\'1 , «виденные у отверстия 2» — по закону Р\'2 (так что «виденные либо у отверстия 1, либо у отверстия 2» распределяются по закону P\'12), а «незамеченные» распределены «волноподобно», как Р12 на фиг. 37.3! Если электроны не видимы, возникает интерференция!
Это уже можно понять. Когда мы не видим электрон, значит, фотон не возмутил его; а если уж мы его заметили, значит, он возмущен фотоном. Степень возмущения всегда одна и та же, потому что все фотоны света производят эффекты одинаковой величины, достаточной для того, чтобы смазать любые интерференционные эффекты.
Но нет ли хоть какого-нибудь способа увидеть электрон, не возмущая его? Мы уже говорили о том, что импульс, уносимый фотоном, обратно пропорционален его длине волны (р=h/l). Чем больше импульс у фотона, тем сильнее он толкает электрон, когда рассеивается на нем. Ага! Раз мы хотим как можно слабее возмущать электроны, то не стоит снижать интенсивность света, лучше снизить его частоту (или, что то же самое, увеличить длину волны). Нужно осветить электроны красным светом. Можно воспользоваться даже инфракрасным светом или радиоволнами (как в радаре). При помощи оборудования, приспособленного для восприятия длинноволнового света, можно тоже разглядеть, куда направился электрон. Может быть, более «мягкий» свет поможет нам избежать сильного возмущения электронов.
Ну что ж, примемся экспериментировать с длинными волнами. Будем повторять наш опыт, увеличивая все больше и больше длину волны. На первых порах ничего не изменится, все результаты будут прежними. А потом произойдет ужасно неприятная вещь. Вы помните, что, изучая микроскоп, мы заметили, что вследствие волновой природы света появляются ограничения на расстояния, на которых два пятна еще не сливаются в одно. Это расстояния порядка длины волны света. И вот теперь это ограничение опять всплывает. Как только длина волны сравняется с промежутком между отверстиями, вспышки станут такими размытыми, что невозможно будет разобрать, возле какого отверстия произошла вспышка! Мы не сможем больше угадывать, какой дыркой воспользовался электрон! Известно, что где-то проскочил, а где — неясно! И это как раз при таком цвете, когда толчки становятся еле заметными, а кривая Р\'12 начинает походить на P12 , т. е. начинает чувствоваться интерференция. И только при длинах волн, намного превышающих расстояние между отверстиями (когда уже нет никакой возможности разобрать, куда прошел электрон), возмущение, причиняемое светом, становится таким слабым, что снова появляется кривая Р12 (см. фиг. 37.3).
В нашем опыте мы обнаружили, что невозможно приспособить свет для того, чтобы узнавать, через какое отверстие проник электрон, и в то же время не исказить картины. Гейзенберг предположил, что новые законы природы были бы совместимы друг с другом только в том случае, если бы существовали некоторые фундаментальные ограничения на наши экспериментальные возможности, ограничения, которых прежде не замечали. Он предложил в качестве общего принципа свой принцип неопределенности. В терминах нашего эксперимента он звучит следующим образом: «Невозможно соорудить аппарат для определения того, через какое отверстие проходит электрон, не возмущая электрон до такой степени, что интерференционная картина пропадает». Если аппарат способен определять, через какую щель проходит электрон, он не способен оказаться столь деликатным, чтобы не исказить картину самым существенным образом. Никому никогда не удалось изобрести или просто указать способ, как обойти принцип неопределенности. Значит, мы обязаны допустить, что он описывает одну из основных характеристик природы.
Полная теория квантовой механики, которой мы в настоящее время пользуемся для описания атомов, а значит, и всего вещества, зависит от правильности принципа неопределенности. Квантовая механика весьма успешно справляется со своими задачами; это укрепляет нашу веру в принцип. Но если когда-нибудь удастся «разгромить» принцип неопределенности, то квантовая механика начнет давать несогласованные результаты и ее придется исключить из рядов правильных теорий явлений природы.
«Ну, хорошо,— скажете вы,— а как же быть с «Утверждением А»? Значит, верно все-таки, что электрон проходит либо сквозь отверстие 1, либо сквозь 2? Или же это неверно?» Единственный ответ, который может быть дан, таков: мы нашли из опыта, что существует некоторый определенный способ, которым мы должны рассуждать, чтобы не прийти к противоречиям.
Вот как мы обязаны рассуждать, чтобы не делать ошибочных предсказаний. Если вы следите за отверстиями, а точнее, если у вас есть прибор, способный узнавать, сквозь какое отверстие из двух проник электрон, то вы можете говорить, что он прошел сквозь отверстие 1 (или 2). Но если вы не пытались узнать, где прошел электрон, если в опыте не было ничего возмущавшего электроны, то вы не смеете думать, что электрон прошел либо сквозь отверстие 1, либо сквозь отверстие 2. Если вы все же начнете так думать и затем делать из этой мысли различные выводы, то, несомненно, натворите ошибок в своем анализе. Вы вынуждены балансировать на этом логическом канате, если хотите успешно описывать природу.
· · ·
Если движение всего вещества, подобно электронам, нужно описывать, пользуясь волновыми понятиями, то как быть с пулями в нашем первом опыте?
Фиг. 37.5. Интерференционная картина при рассеянии пуль.
а — истинная (схематично); б — наблюдаемая.
Почему мы не увидели там интерференционной картины? Дело оказывается в том, что у пуль длина волны столь незначительна, что интерференционные полосы становятся очень тонкими. Столь тонкими, что никакой детектор разумных размеров не разделит их на отдельные максимумы и минимумы. Мы с вами видели только нечто усредненное — это и есть классическая кривая. На фиг. 37.5 мы попытались схематически изобразить, что происходит с крупными телами. На фиг. 37.5, а показано распределение вероятностей для пуль, предсказываемое квантовой механикой. Предполагается, что резкие колебания должны дать представление об интерференционной картине от очень коротких волн. Но любой физический детектор неизбежно вынужден будет накрыть сразу множество зигзагов этой кривой, так что измерения, проведенные с его помощью, дадут плавную кривую, показанную на фиг. 37.5,6.
§ 7. Начальные принципы квантовой мвханики
Теперь подытожим основные выводы из наших опытов. Сделаем мы это в такой форме, чтобы они оказались справедливыми для всего класса подобных опытов. Сводку итогов можно записать проще, если сперва определить «идеальный опыт», т. е. опыт, в котором отсутствуют неопределенные внешние влияния и нет никаких не поддающихся учету изменений, колебаний и т. д. Точная формулировка будет такова: «Идеальным опытом называется такой, в котором все начальные и конечные условия опыта полностью определены». Такую совокупность начальных и конечных условий мы будем называть «событием». (Например: «электрон вылетает из пушки, попадает в детектор, и больше ничего не происходит».) А сейчас дадим нашу сводку выводов.
СВОДКА ВЫВОДОВ
Вероятность события в идеальном опыте дается квадратом абсолютной величины комплексного числа j, называемого амплитудой вероятности.
Р — вероятность,
j — амплитуда вероятности, (37 6)
Р=|j|2.
Если событие может произойти несколькими взаимно исключающими способами, то амплитуда вероятности события — это сумма амплитуд вероятностей каждого отдельного способа. Возникает интерференция.
(37.7)
3) Если ставится опыт, позволяющий узнать, какой из этих взаимно исключающих способов на самом деле осуществляется, то вероятность события—это сумма вероятностей каждого отдельного способа. Интерференция отсутствует.
P = P1 +P2 (37.8)
· · ·
Быть может, вам все еще хочется выяснить: «А почему это? Какой механизм прячется за этим законом?» Так вот: никому никакого механизма отыскать не удалось. Никто в мире не сможет вам «объяснить» ни на капельку больше того, что «объяснили» мы. Никто не даст вам никакого более глубокого представления о положении вещей. У нас их нет, нет представлений о более фундаментальной механике, из которой можно вывести эти результаты.
Мы хотели бы подчеркнуть очень важное различие между классической и квантовой механикой. Мы уже говорили о вероятности того, что электрон попадает туда-то и туда-то в данных обстоятельствах. Мы подразумевали, что с нашим (да и с самым лучшим) экспериментальным устройством невозможно будет предсказывать точно, что произойдет. Мы способны только определять шансы! Это означало бы, если это утверждение правильно, что физика отказалась от попыток предсказывать точно, что произойдет в определенных условиях. Да! Физика и впрямь сдалась. Мы не умеем предсказывать, что должно было бы случиться в данных обстоятельствах. Мало того, мы уверены, что это немыслимо: единственное, что поддается предвычислению,— это вероятность различных событий. Приходится признать, что мы изменили нашим прежним идеалам понимания природы. Может быть, это шаг назад, но никто не научил нас, как избежать его!
Сделаем теперь несколько замечаний об одном утверждении, которое иногда делали те, кто не хотел пользоваться приведенным описанием. Они говорили: «Может быть, в электроне происходят какие-то внутренние процессы, имеются какие-то внутренние переменные, о чем мы пока ничего не знаем. Может быть, именно поэтому мы не умеем предугадывать, что случится. А если бы мы могли попристальней вглядеться в электрон, то смогли бы сказать, куда он придет». Насколько нам известно, такой возможности нет. Трудности все равно остаются. Предположим, что внутри электрона есть механизм какого-то рода, определяющий, куда электрон собирается попасть. Тогда эта машина должна определить также, через какое отверстие он намерен проследовать. Но не забывайте, что вся эта внутриэлектронная механика не должна зависеть от того, что делаем мы, и, в частности, от того, открыли мы данное отверстие или нет. Значит, если электрон, отправляясь в путь, уже прикинул, сквозь какую дырку он протиснется и где он приземлится, то для электронов, облюбовавших отверстие 1, мы получим распределение P1, а для остальных — распределение p2. А тогда для тех электронов, которые прошли через оба отверстия, с необходимостью распределение окажется суммой P1+P2 . Не видно способа обойти этот вывод. Но мы экспериментально доказали, что он неверен. Никто еще не нашел отгадки этой головоломки. Стало быть, в настоящее время приходится ограничиваться расчетом вероятностей. Мы говорим «в настоящее время», но мы очень серьезно подозреваем, что все это — уже навсегда и разгрызть этот орешек человеку не по зубам, ибо такова природа вещей.
§ 8. Принцип неопределенности
Вот как сам Гейзенберг сформулировал свой принцип неопределенности: если вы изучаете какое-то тело и вы в состоянии определить z-компоненту импульса тела с неопределенностью Dр, то вы не можете одновременно определить координату х тела с точностью, большей чем Dx= h/Dр.
Произведение неопределенностей в положении тела и в его импульсе в любой момент должно быть больше постоянной Планка. Это частный случай принципа неопределенности. Более, общая формулировка была высказана в предыдущем параграфе: нельзя никаким образом устроить прибор, определяющий, какое из двух взаимно исключающих событий осуществилось, без того, чтобы в то же время не разрушилась интерференционная картина.
Сейчас на одном частном случае мы покажем, что, если не иметь в своем распоряжении какого-нибудь принципа, наподобие принципа Гейзенберга, трудностей избежать никак нельзя. Представим себе такое видоизменение опыта, показанного на фиг. 37.3, в котором стенкой с отверстиями служит пластинка на катках, способная откатываться вверх и вниз (в x-направлении),
как показано на фиг. 37.6.
Фиг. 37.6. Опыт, в котором измеряется отдача стенки.
Внимательно следя за движением пластинки, можно попытаться узнать, сквозь какое отверстие прошел электрон. Представьте, что случится, когда детектор поставят в точку х=0. Когда электрон проходит через отверстие 1, он должен отклониться вниз от пластинки, чтобы попасть в детектор. Так как изменилась вертикальная компонента импульса, то к пластинке приложится сила отдачи — тот же импульс, но в противоположном направлении. Пластинка испытает толчок вверх. А когда электрон пройдет сквозь нижнее отверстие, пластинка почувствует толчок вниз. И при любом другом положении детектора импульс, получаемый пластинкой, будет тоже неодинаков: когда электрон проскакивает через верхнюю дырку — один, когда сквозь нижнюю — другой. И, значит, не трогая электрон, ни капельки не возмущая его, а лишь следя за пластинкой, можно узнать, каким путем воспользовался электрон.
Чтобы определить это, нам нужно только знать, каков был импульс экрана до прихода электрона. Тогда, измерив импульс экрана после пролета электрона, мы сразу увидим, насколько он переменился. Но вспомните, что, согласно принципу неопределенности, при этом уже невозможно будет знать положение пластинки с произвольной точностью. Однако если мы не знаем точно, где она находится, как же мы узнаем, где эти два отверстия? Для каждого нового электрона, проникающего сквозь пластинку, отверстия окажутся на новом месте. А это значит, что центр нашей интерференционной картины для каждого электрона тоже будет на новом месте. Интерференционные полосы (колебания вероятности) смажутся. В следующей главе мы докажем численно, что при измерении импульса пластинки (достаточно точном для того, чтобы из измерений отдачи узнать номер отверстия) неопределенности в координате х пластинки как раз хватит на то, чтобы сдвинуть возникающую в детекторе картину вверх или вниз на расстояние от максимума до ближайшего минимума. От этих случайных сдвигов картина интерференции размажется и от нее, в конце концов, не останется и следа.
Принцип неопределенности «спасает» квантовую механику. Гейзенберг понимал, что если б можно было с большей точностью измерять и положение, и импульс одновременно, то квантовая механика рухнула бы. Вот он и допустил, что это невозможно. Тогда люди принялись придумывать способы, как все-таки это сделать. Но никому не удалось представить себе способ, как измерять положение и импульс чего угодно — экрана, электрона, биллиардного шара, любого предмета — с большей точностью. И квантовая механика продолжает вести свой рискованный, впрочем, вполне четко очерченный образ жизни.
Глава 38
СООТНОШЕНИЕ МЕЖДУ ВОЛНОВОЙ И КОРПУСКУЛЯРНОЙ ТОЧКАМИ ЗРЕНИЯ
§ 1. Волны амплитуды вероятности
§ 2. Измерение положения и импульса
§ 3. Дифракция на кристалле
§ 4. Размер атома
§ 5. Уровни энергии
§ 6. Немного философии
§ 1. Волны амплитуды вероятности
В этой главе мы с вами обсудим соотношение между волновой и корпускулярной точками зрения. Из предыдущей главы мы уже знаем, что ни та, ни другая неверны. Обычно мы всегда старались формулировать понятия аккуратно или по крайней мере, достаточно точно, чтобы при дальнейшем изучении их не пришлось бы менять. Разрешалось их расширять, обобщать, но уже никак не менять! Но как только мы пытаемся говорить об электроне как волне или об электроне как частице, то любая из этих точек зрения рано или поздно меняется, ведь обе они приблизительны. Поэтому все, что мы изучим в этой главе, в каком-то смысле неправильно; будут высказаны некие полуинтуитивные соображения, которым со временем предстоит уточняться, и кое-что придется слегка изменить, когда мы их уточним с помощью квантовой механики. Причина в том, что, не собираясь сейчас штудировать квантовую механику по всем правилам, мы хотим получить, по крайней мере, представление о характере эффектов, которые мы там обнаружим. Да и к тому же весь наш опыт относится либо к волнам, либо к частицам, и поэтому весьма удобно использовать то те, то другие представления, чтобы добиться некоторого понимания того, что произойдет в определенных обстоятельствах, пока мы еще не знаем всей математики квантовомеханических амплитуд. По мере нашего продвижения вперед мы будем стараться прояснять самые слабые места. Впрочем, многие из этих мест почти верны, все дело просто в толковании.
Прежде всего, мы уже знаем, что новый, выдвигаемый квантовой механикой способ изображать мир — новая система мира — состоит в том, чтобы задавать амплитуду любого события, которое может случиться. Если событие состоит в регистрации частицы, то можно задать амплитуду обнаружения этой частицы в тех или иных местах и в то или иное время. Вероятность обнаружить частицу тогда будет пропорциональна квадрату абсолютной величины амплитуды. Вообще говоря, вероятность обнаружить частицу в каком-то месте и в какое-то время меняется в зависимости от места и от времени.
В частном случае амплитуда может изменяться синусоидально в пространстве и времени по закону exp[i(wt-k·r)] (не забывайте, что амплитуда — число комплексное, а не действительное); тогда в нее входит определенная частота w и определенный волновой вектор k (величина k=|k| называется волновым числом). Это отвечает той предельной классической ситуации, когда можно считать, что имеется частица с известной энергией Е, которая связана с частотой соотношением
(38.1)
и с известным импульсом р, связанным с волновым вектором формулой
(38.2)
Это означает, что понятие частицы ограниченно. Само понятие частицы, понятие ее положения, ее импульса и т. д., которым мы так часто пользуемся, в некотором смысле не является удовлетворительным. Например, когда амплитуда, относящаяся к событию обнаружения частицы в том или ином месте, дается функцией exp[i(wt-k·r)], равной по абсолютной величине единице, то это значит, что вероятность обнаружить частицу одинакова для любой точки. Получается, что тогда мы просто не знаем, где она находится. Она может оказаться где угодно, ее положение в высшей \'степени неопределенно.
Когда же положение частицы более или менее известно, когда оно может быть предсказано довольно точно, то вероятность того или иного ее местоположения должна быть отлична от нуля в определенной области, имеющей, скажем, длину Dx. Вне этой области вероятность равна нулю. Вероятность — это квадрат абсолютной величины амплитуды. Когда квадрат абсолютной величины равен нулю, то и амплитуда равна нулю.
Фиг. 38.1. Волновой пакет длиной Dx.
Выходит, что амплитуда описывает цуг волн протяженностью Dx (фиг. 38.1), а длине волны (расстоянию между горбами волн) в цуге волн соответствует некоторое значение импульса частицы.
Здесь мы сталкиваемся со странным и в то же время очень простым явлением, никак непосредственно с квантовой механикой не связанным. Оно известно всем, кто занимался волнами, даже не зная квантовой механики, а именно: нельзя однозначно определить длину волны для короткого цуга волн. У такого цуга нет определенной длины волн; в волновом числе имеется неопределенность, связанная с конечной длиной цуга, а значит, и неопределенность в импульсе.
§ 2. Измерение положения и импульса
Чтобы понять, почему в квантовой механике появляется неопределенность в положении и (или) в импульсе, рассмотрим два примера. Мы уже видели раньше, что если бы этого не было, если бы можно было параллельно измерять и местонахождение, и импульс какого-то тела, то возник бы парадокс. К счастью, парадокса не возникает, а то обстоятельство, что неопределенность естественным образом вытекает из волновой картины, свидетельствует, что все здесь взаимосвязано.
Вот первый пример, показывающий связь импульса и координаты в условиях, которые легко себе представить. Пусть сквозь единственную щель в экране проникают частицы, пришедшие издалека и обладающие определенной энергией. Движутся все они горизонтально (фиг. 38.2). Сосредоточим наше внимание на вертикальной составляющей импульса. У каждой из этих частиц имеется (в обычном классическом смысле) горизонтальная составляющая импульса определенной величины р0 . Вертикальная составляющая импульса рy (до того, как частица пройдет сквозь прорезь) также в классическом смысле хорошо известна: частицы не движутся ни вверх, ни вниз, потому что их источник очень удален, значит, вертикальная составляющая импульса частицы в точности равна нулю. А теперь предположим, что ширина щели равна В.
Фиг. 38.2. Дифракция частиц, проходящих сквозь щель.
Когда частица пройдет через щель, то ее вертикальная координата у определится с хорошей точностью ± В. Это значит, что неопределенность в положении частицы Dy будет порядка В. Может, вы захотите сказать, что Dpy=0, потому что импульс частиц, мол, точно горизонтален? Но это не так. Это прежде мы знали, что импульс имеет только горизонтальную составляющую, а теперь мы этого уже не знаем. Перед тем как частица проникла сквозь щель, мы не знали ее вертикальной координаты. После того как частица проникла сквозь щель, мы узнали ее вертикальную координату, но потеряли информацию об ее вертикальной составляющей импульса! Почему? Да потому, что, согласно волновой теории, происходит отклонение, или дифракция, волн, проникших сквозь щель, подобно тому как это бывает со светом. Поэтому есть конечная вероятность того, что частицы, пройдя сквозь щель, не пойдут прямо вперед. Вся картина распространения расплывается за счет дифракции, и угол этого расширения (угол, под которым виден первый минимум) есть мера неопределенности направления частицы.
Каким образом происходит расплывание изображения в ширину? Расплывание означает, что существует некая вероятность того, что частица отправится вверх или вниз, т. е. приобретет компоненту импульса, направленную вверх или вниз. (Мы говорим и о вероятности и о частице, потому что дифракционную картину можно обнаружить с помощью счетчика частиц, а когда счетчик регистрирует частицу, скажем, в точке С на фиг. 38.2, то он регистрирует частицу целиком. А это значит в классическом смысле, что частица имеет вертикальный импульс, направляющий ее из щели прямо в точку С.)
Чтобы примерно представить себе степень расплывания импульса, напишем, что вертикальный импульс ру размазан на р0Dq, где р0 — горизонтальный импульс. Чему же равно Dq в размазанной картине? Известно, что первый минимум наблюдается при угле Dq таком, что в этом направлении волна от дальнего края щели должна отстать на одну свою длину от волны от ближнего края (мы об этом уже говорили в гл. 30). Стало быть, Dq равно l/B, и тем самым Dрy в этом эксперименте равно р0l/В. Чем меньше будет В, чем точнее будет определяться положение частицы, тем шире будет дифракционная картина. Вспомните, что когда мы закрывали щели в эксперименте с микроволнами, то интенсивность в стороне от щели возрастала. Значит, чем уже щель, тем шире становится картина дифракции, тем правдоподобнее, что мы обнаружим у частицы импульс, направленный в сторону. И неопределенность в вертикальном импульсе, действительно, обратно пропорциональна неопределенности в у, потому что их произведение равно p0l.
Фиг. 38.3. Определение импульса с помощью дифракционной решетки.
Но l — это длина волны, а р0 — импульс, и в соответствии с квантовой механикой их произведение — это постоянная Планка h. Получается, что произведение неопределенностей в вертикальном импульсе и в вертикальной координате есть величина порядка h:
(38.3)
Мы не можем приготовить систему, в которой положение частицы по вертикали было бы известно, и в то же время предсказывать с определенностью, превышающей h/Dy, насколько ее движение отклонится от вертикали. Неопределенность в вертикальном импульсе всегда больше h/Dy, если Dy — неопределенность, с какой мы знаем положение частицы.
Некоторые люди утверждают, что в квантовой механике все неправильно. Когда, говорят они, частица приближалась слева, ее вертикальный импульс был равен нулю. А когда она прошла через щель, стало известно ее положение. И то, и другое может быть определено с любой точностью.
Совершенно верно. Мы можем зарегистрировать частицу и определить, каково ее положение и каким должен был быть ее импульс, чтобы она попала туда, куда она попала. Это все верно. Но соотношение неопределенностей (38.3) ничего общего с этим не имеет. Уравнение (38.3) относится к возможности предсказания, а не к замечаниям о том, что произошло в прошлом. Какая польза в том, что мы скажем: «Я знал, каков был импульс до прохода частицы сквозь щель, а теперь узнал к тому же и координату»? Ведь теперь-то знание об импульсе частицы уже утеряно. Раз она прошла сквозь щель, то мы уже не можем больше предсказывать ее вертикальный импульс. Речь идет о теории, способной к предсказаниям, а не об измерениях после того, как все завершилось. Мы и обсуждаем вопрос о том, что можно предвидеть.
Попробуем теперь по-иному подойти к этим вещам. Приведем другой пример того же явления, на этот раз с более подробными количественными оценками. Прежде мы измеряли импульс классическим способом: мы рассматривали направление, скорость, углы, и тому подобное; в этом заключался способ получения импульса путем классического анализа. Но раз импульс связан с волновым числом, то в природе существует и другой, совершенно иной путь измерения импульса частиц (все равно, фотона или любой другой), не имеющий классического аналога. В нем используется уравнение (38.2) и просто измеряется длина волны. Давайте попробуем таким способом измерить импульс.
Пусть имеется решетка со множеством линий (фиг. 38.3), на которую направлен пучок частиц. Мы неоднократно рассматривали эту задачу: когда у частиц есть определенный импульс, то вследствие интерференции в некотором направлении возникает очень резкий максимум. Мы также говорили о том, насколько точно можно определить этот импульс, т. е. какова разрешающая сила решетки. Мы не будем заново это все выводить, а сошлемся на гл. 30; там мы выяснили, что относительная неопределенность в длине волны, связанная с данной решеткой, равна 1/Nm, где N — количество линий решетки, а т — порядок дифракционного максимума. Иначе говоря,
(38.4)
Перепишем эту формулу в виде
(38.5)
где расстояние L показано на фиг. 38.3. Это — разность двух расстояний: расстояния, которое должна пройти волна (или частица), отразившись от нижней части решетки, и расстояния, которое нужно пройти, отразившись от верха решетки.
Другими словами, волны, образующие дифракционный максимум,— это волны, приходящие от разных частей решетки. Первыми прибывают волны, вышедшие снизу — это начало цуга волн, а потом следуют дальнейшие части цуга, от средних частей решетки, пока не придут волны от верха: точка цуга, удаленная от его начала на расстояние L. Значит, чтобы получить в спектре резкую линию, отвечающую определенному импульсу [с неопределенностью, даваемой формулой (38.4)], для этого нужен цуг волн длиной L. Если цуг чересчур короток (короче L), то не вся решетка будет действовать. Волны, образующие спектр, будут отражаться при этом только от небольшого куска решетки, и решетка не будет хорошо работать — получится сильное размытие по углу. Чтобы его сузить, надо использовать всю ширину решетки так, чтобы хотя бы на одно мгновение весь цуг волн улегся одновременно на решетке и рассеялся ото всех ее частей. Потому-то длина цуга должна быть равна L; тогда только неопределенность в длине волны окажется меньше, чем указано формулой (38.5). Заметим, что
(38.6)
поэтому
(38.7)
где L — длина цуга волн.
Это означает, что когда цуг волн короче L, то неопределенность в волновом числе превосходит 2p/L. Иначе говоря, неопределенность в волновом числе, умноженная на длину волнового цуга (назовем ее на минутку Dx), больше 2p. Мы назвали ее Dx потому, что это как раз неопределенность в положении частицы. Если цуг волн тянется только на конечном промежутке, то лишь там мы и можем обнаружить частицу с неопределенностью Dx;. Это свойство волн (тот факт, что произведение длины цуга волн на неопределенность в волновом числе, связанном с этим цугом, не меньше 2p) опять-таки хорошо знакомо всем, кто занимался волнами. И никакого отношения к волновой механике оно не имеет. Просто нельзя очень точно подсчитать число волн в конечной их веренице.
Объяснить это можно и по-другому. Пусть длина цуга волн L. Так как на концах цуга волны спадают (как на фиг. 38.1), то количество волн на длине L известно с точностью порядка ± 1. Но число волн на длине L равно kL/2p. Значит, неопределенность в k равна 2p/L . Опять получилась формула (38.7) как простое свойство всяких волн. Это остается верным всегда: и для волн в пространстве, когда k есть количество радиан на 1 см, a L — длина цуга, и для волн во времени, когда w есть число колебаний в 1 сек, а Т — «длина» во времени того же цуга. Иначе говоря, если цуг волн длится только конечное время Т, то неопределенность в частоте дается формулой
(38.8)
Мы все время старались подчеркнуть, что это свойство самих волн, что все это хорошо известно, например в теории звука. А квантовомеханические применения этих свойств опираются на толкование волнового числа как меры импульса частицы по правилу р=hk, так что (38.7) уже утверждает, что Dр»h/Dx. Это устанавливает предел классическому представлению об импульсе. (Естественно, оно и должно быть как-то подвергнуто ограничению, если мы собираемся изображать частицы как волны!) И очень хорошо, что мы нашли правило, которое каким-то образом берется указать, где нарушаются классические представления.
§ 3. Дифракция на кристалле
Теперь рассмотрим отражение волн вещества от кристалла. Кристалл — это твердое тело, состоящее из множества одинаковых атомов, расположенных стройными рядами. Как можно расположить этот строй атомов, чтобы, отражая в данном направлении данный пучок света (рентгеновских лучей), электронов, нейтронов, чего угодно, получить сильный максимум? Чтобы испытать сильное отражение, лучи, рассеянные от всех атомов, должны быть в фазе друг с другом. Не может быть так, чтобы точно половина волн была в фазе, а половина — в противофазе, тогда все волны исчезнут. Нужно, стало быть, найти поверхности постоянной фазы; это, как мы уже объясняли раньше, плоскости, образующие равный угол с начальным и конечным направлениями (фиг. 38.4).
Если мы рассмотрим две параллельные плоскости, как показано на фиг. 38.4, то волны, рассеянные на них, окажутся в фазе только тогда, когда разность расстояний, пройденных фронтом волны, будет равна целому числу длин волн. Эта разность, как легко видеть, равна 2dsinq, где d — расстояние между плоскостями. Итак, условие когерентного отражения имеет вид
(n=1, 2, ...). (38.9)
Если, скажем, кристалл таков, что атомы в нем укладываются на плоскостях, удовлетворяющих условию (38.9) с n=1, то будет наблюдаться сильное отражение. Если, с другой стороны, существуют другие атомы той же природы (и расположенные с той же плотностью) как раз посередине между слоями, то на этих промежуточных плоскостях произойдет рассеяние равной силы; оно интерферирует с первым и погасит его. Поэтому d в выражении (38.9) должно означать расстояние между примыкающими плоскостями; нельзя взять две плоскости, разделенные пятью слоями, и применить к ним эту формулу!
Фиг. 38.4. Рассеяние волн плоскостями кристалла.
Фиг. 38.5. Дифракция рентгеновских лучей на кристаллах каменной соли.
Интересно, что настоящие кристаллы обычно не столь просты,— это не одинаковые атомы, повторяющиеся по определенному закону. Они скорее похожи, если прибегнуть к двумерной аналогии, на обои, на которых повторяется один и тот же сложный узор. Для атомов «узор» — это некоторая их расстановка, куда может входить довольно большое число атомов; скажем, для углекислого кальция — атомов кальция, углерода и трех атомов кислорода. Важно не то, каков рисунок, а то, что он повторяется.
Этот основной рисунок называется ячейкой, а способ повторения определяет тип решетки; тип решетки можно сразу определить, взглянув на отражения и рассмотрев их симметрию. Другими словами, от типа решетки зависит, где не будет отражения (лучей от кристалла), но чтобы узнать, что стоит в каждой ячейке, надо учесть и интенсивность рассеяния по тем или иным направлениям. Направления рассеяния зависят от типа решетки, а сила рассеяния определяется тем, что находится внутри каждой ячейки; этим способом и было изучено строение кристаллов.
Две фотографии дифракции рентгеновских лучей даны на фиг. 38.5 и 38.6.
Занятная вещь получается с рассеянием, когда промежутки между ближайшими плоскостями меньше l/2. В этом случае уравнение (38.9) вообще не имеет решений ни для одного п. Выходит, когда l больше двойного промежутка между примыкающими плоскостями, то никаких боковых дифракционных пятнышек нет и свет (и не только свет, а все, что хотите) прямо проходит через вещество.
Фиг. 38.6. Дифракция рентгеновских лучей на миоглобине.
Фиг. 38.7. Диффузия нейтронов из котла сквозь графитовый блок
Проходит, не отражаясь, не рассеиваясь, не теряясь. В частности, свет (у него l много больше этих промежутков) проходит, не давая никакой картины отражений от кристаллических плоскостей.
Интересные следствия этого явления наблюдаются в урановых реакторах — источниках нейтронов (нейтроны — это, уж бесспорно, частицы, спросите у кого угодно!). Если пустить эти самые частицы-нейтроны через длинный блок графита, то они начнут рассеиваться и с трудом будут протискиваться в глубь блока (фиг. 38.7). Рассеиваются они из-за того, что отскакивают от атомов. Но строго говоря, согласно волновой теории, все обстоит как раз наоборот — они отскакивают от атомов из-за дифракции от кристаллических плоскостей. Оказывается, что если взять длинный стержень графита, то у всех нейтронов, выходящих из его дальнего конца, окажется большая длина волны! Если нанести на график интенсивность нейтронов как функцию длины волны, то на нем изобразятся только длины волн выше некоторого минимума (фиг. 38.8). Значит, таким путем можно получить очень медленные нейтроны. Проникают сквозь графит только самые медленные нейтроны, они не дифрагируют, не рассеиваются на кристаллических плоскостях графита, а спокойно проходят, как свет через стекло. И нет никакого рассеяния по сторонам. Существует и множество других доказательств реальности нейтронных волн и волн других частиц.
Фиг. 38.8. Интенсивность нейтронов, выходящих us стержня графита, как функция длины волны.
§ 4. Размер атома
Рассмотрим еще одно применение принципа неопределенности (38.3), но только, пожалуйста, не воспринимайте этот расчет чересчур буквально; общая мысль правильна, но анализ проделан не очень аккуратно. Мысль эта касается определения размера атомов; ведь по классическим воззрениям электроны должны были бы излучать свет и, крутясь по спирали, упасть на поверхность ядра. Но, согласно квантовой механике, это невозможно, потому что в противном случае мы бы знали, где очутился электрон и насколько быстро он вертится.
Допустим, имеется атом водорода и мы измеряем положение электрона; мы не должны быть в состоянии предвидеть точно, где он окажется, иначе расплывание импульса станет бесконечным. Всякий раз, как мы смотрим на электрон, он где-нибудь оказывается; у него есть амплитуда вероятности оказаться в различных местах, так что есть вероятность найти его где угодно. Однако не все эти места должны быть возле самого ядра; положим, что существует разброс в расстояниях порядка а, т. е. расстояние от ядра до электрона примерно в среднем равно а. Определим а, потребовав, чтобы полная энергия атома оказалась минимальной.
Разброс в импульсах, в согласии с соотношением неопределенностей, должен быть равен примерно h/а; поэтому, стремясь измерить как-нибудь импульс электрона (например, рассеивая на нем фотоны и наблюдая эффект Допплера от движущегося рассеивателя), мы не будем получать все время нуль (электрон не стоит на месте), а будем получать импульсы порядка р»h/а. Кинетическая энергия электронов примерно будет равна 1/2mv2 = Р2/2m = h2/2ma2. (To, что мы сейчас делаем, в каком-то смысле есть анализ размерностей: мы прикидываем, как кинетическая энергия может зависеть от постоянной Планка h, массы т и размера атома а. Ответ получается с точностью до численных множителей типа 2, p и т. д. Мы даже не определили как следует а.) Далее, потенциальная энергия равна частному от деления минус е2 на расстоянии от центра, скажем, — е2/а (как мы помним, е2 — это квадрат заряда электрона, деленный на 4pe0). Теперь смотрите: когда а уменьшается, то потенциальная энергия тоже уменьшается, но чем меньше а, тем больше требуемый принципом неопределенности импульс и тем больше кинетическая энергия. Полная энергия равна
(38.10)
Мы не знаем, чему равно а, но зато мы знаем, что атом, обеспечивая свое существование, вынужден идти на компромисс, с тем чтобы полная энергия его была как можно меньше. Чтобы найти минимум Е, продифференцируем его по а, потребуем равенства производной нулю и найдем а. Производная Е равна
(38.11)
Уравнение dE/da=0 дает для а величину
(38.12)
Это расстояние называется воровским радиусом, и мы видим, что размеры атома — порядка ангстрема. Получилась правильная цифра. Это очень хорошо, это даже удивительно хорошо, ведь до сих пор никаких теоретических соображений о размере атома у нас не было. С классической точки зрения атомы попросту невозможны: электроны должны упасть на ядра. Подставив формулу (38.12) для а0 в (38.10), мы найдем энергию. Она оказывается равной
(38.13)
Что означает отрицательная энергия? А то, что, когда электрон находится в атоме, у него энергии меньше, чем когда он свободен. Иначе говоря, в атоме он связан. И нужна энергия, чтобы вырвать его из атома; для ионизации атома водорода требуется энергия 13,6 эв. Не исключено, конечно, что потребуется вдвое или втрое больше энергии, или в p раз меньше, так как расчет наш был очень неряшлив. Однако мы схитрили и выбрали все константы так, чтобы итог получился абсолютно правильным! Эта величина -13,6 эв — называется ридбергом энергии; это энергия ионизации водорода.
Только теперь становится понятным, отчего мы не проваливаемся сквозь пол. При ходьбе вся масса атомов наших ботинок отталкивается от пола, от всей массы его атомов. Атомы сминаются, электроны вынуждены тесниться в меньшем объеме, и по принципу неопределенности их импульсы в среднем увеличиваются, а увеличение импульсов означает рост энергии. Сопротивление атомов сжатию — это не классический, а квантовомехаиический эффект. По классическим понятиям следовало ожидать, что при сближении электронов с протонами энергия уменьшится; наивыгоднейшее расположение положительных и отрицательных зарядов в классической физике — это когда они сидят верхом друг на друге. Классической физике это было хорошо известно и представляло загадку: атомы-то все же существовали! Конечно, ученые и тогда придумывали разные способы выхода из тупика, но правильный (будем надеяться!) способ стал известен только нам!
Кстати, когда вокруг ядра бывает много электронов, то они тоже стараются держаться подальше друг от друга. Причина этого пока вам непонятна, но это факт, что если какой-то электрон занял какое-то место, то другой этого места уже не займет. Точнее, из-за существования двух направлений спина, эти электроны могут усесться друг на друга и вертеться: один — в одну сторону, другой — в другую. Но уже никакого третьего на это место вам не поместить. Вы должны их помещать на новые места, и в этом-то истинная причина того, что вещество обладает упругостью. Если бы можно было помещать все электроны в одно место, вещество было бы даже плотней, чем обычно. И именно благодаря тому, что электроны не могут сидеть друг на друге, существуют и столы, и другие твердые предметы.
Естественно поэтому, что, желая понять свойства вещества, нужно пользоваться квантовой механикой; классической для этого явно недостаточно.
§ 5. Уровни энергии
Мы говорили уже об атоме в наинизшем возможном энергетическом состоянии. Но оказывается, что электрон способен и на многое другое. Он может вращаться и колебаться гораздо энергичней, возможности его движений в атоме довольно многообразны. Согласно квантовой механике, при установившихся условиях движения атом может обладать только вполне определенными энергиями. На диаграмме фиг. 38.9 мы будем откладывать энергии по вертикали, а горизонтальными линиями отмечать разрешенные значения энергии. Когда электрон свободен, т. е. когда его энергия положительна, она может быть любой; скорость электрона тоже может быть какой угодно. Но энергии связанных состояний не произвольны. Атом может иметь только ту или иную энергию из дозволенной совокупности значений, скажем, таких, как на фиг. 38.9.
Обозначим эти разрешенные значения через Е0 , E1 , E2 , Е3 . Если первоначально атом находится в одном из этих «возбужденных» состояний E1, E2 и т. д., он не останется в нем навсегда. Раньше или позже он упадет в низшее состояние и излучит при этом энергию в виде света. Частота испущенного света определяется требованием сохранения энергии плюс квантовомеханическим пониманием того, что частота света связана с энергией света условием (38.1).
Фиг. 38.9. Схема энергий атома. Показано несколько возможных переходов.
Поэтому, например, частота света, освобожденного в переходе от энергии Е3 к энергии E1 , равна
(38.14)
Эта частота характерна для данного сорта атомов и определяет линию в спектре испускания. Возможен и другой переход — от E3 к Е0 . У него своя частота:
(38.15)
Еще одна возможность заключается в том, что если атом возбужден до состояния E1, то он может упасть в основное состояние е0, излучая фотон с частотой
(38.16)
Мы привели здесь эти три перехода для того, чтобы подчеркнуть интересную связь между ними. Из трех формул (38.14), (38.15), (38.16) легко получить
(38.17)
Вообще, обнаружив две линии в спектре, можно ожидать, что найдется и линия с частотой, равной сумме (или разности) частот. Все линии можно объяснить, отыскав серию уровней, таких, что каждая линия соответствует разности энергий между какими-то двумя уровнями. Это замечательное совпадение между частотами линий в спектре было замечено еще до открытия квантовой механики. Его называют комбинационным принципом Ритца. С точки зрения классической механики он опять выглядит таинственно. Впрочем, не будем больше напоминать о том, что классическая механика обанкротилась в мире атомов; мне кажется, мы это уже хорошо показали.
Мы говорили уже о том, что в квантовой механике все события представляются в виде амплитуд, которые ведут себя как волны, имеют определенную частоту и волновое число. Посмотрим теперь, как при помощи амплитуд объяснить, что у атома бывают только определенные энергетические состояния. Из всего, что было сказано до сих пор, это вывести и понять невозможно. Но зато мы все знаем, что волны в ограниченном объеме обладают определенными частотами. Скажем, если звуковая волна ограничена пределами органной трубы или как-либо иначе, то звуковые колебания могут быть разными, но их частоты не могут быть любыми. И так всегда: у тела, внутри которого держатся волны, всегда бывают определенные резонансные частоты. Волны, заключенные в ограниченный объем, всегда обладают лишь определенным набором частот. (В дальнейшем мы еще будем изучать это явление и выпишем все нужные формулы.) Ну, а поскольку существует общее соотношение между частотой колебаний амплитуды и энергией, то нет ничего удивительного в том, что электроны, связанные в атомах, обладают только вполне определенными энергиями.
§ 6. Немного философии
Поговорим еще немного о философии квантовой механики. Как и всегда, здесь есть две стороны: философское содержание физики и его экстраполяция на другие области знаний. Когда философские идеи, связанные с наукой, переносятся на другие области, они обычно при этом искажаются до неузнаваемости. Поэтому мы ограничим свои замечания, насколько это возможно, только физикой.
Прежде всего начнем с самого интересного предмета — с идеи принципа неопределенности: наблюдение воздействует на явление. Хоть и всегда было известно, что, наблюдая явление, мы воздействуем на него, но здесь суть-то в том, что этим воздействием нельзя пренебречь, нельзя его свести до нуля, нельзя переделкой прибора произвольно уменьшить это влияние. Наблюдая явление, нельзя хотя бы слегка не нарушить его ход, и без учета этого нарушения теория не может стать последовательной. И в доквантовой физике наблюдатель иногда был важен, но лишь в довольно тривиальном смысле. Рассматривался, скажем, такой вопрос: дерево падает в лесу, в котором нет никого, кто мог бы услышать это; вызовет ли падение шум? И следовал ответ: настоящее дерево, падая в настоящем лесу, бесспорно, шум вызовет, даже если никого поблизости нет. Пусть никто падения слышать не мог, все равно останутся другие следы — кое-где осыплются листья, а на некоторых листочках останутся едва заметные царапинки от колючек, которые можно будет объяснить лишь тем, что листва дрожала. Так что следует допустить, что в некотором смысле звук и впрямь существовал. «Но было ли ощущение звука?» — можем мы спросить. Нет, для ощущения, видимо, нужно и сознание. А есть ли сознание у муравьев, да и водятся ли они в этом лесу и сознают ли что-либо деревья — вопрос темный. Поэтому бросим эту задачу.
С тех пор как родилась квантовая механика, стали подчеркивать и другое положение: не надо говорить о вещах, которые невозможно измерить. (Кстати, и теория относительности говорила об этом же.) Пока не определено, как измерять величину, ей нет места в теории. А поскольку точное значение импульса локализованной (находящейся в каком-то месте) частицы не может быть определено при помощи измерения, значит, импульсу нечего делать в теории.
Так вот, если вы думаете, что классическая теория потому и погибла, вы ошибаетесь. Было бы легкомысленно сделать такой вывод. Невозможность точного измерения координаты и одновременно импульса не означает априори, что нельзя о них говорить, а означает только, что говорить о них нет необходимости. На самом деле в науках бывает иначе: идея или понятие, которые невозможно прямо связать с опытом или замерить, могут быть полезными, а могут быть бесполезными. О них можно только сказать что они не обязаны присутствовать в теории. Пусть, например, мы сравниваем классическую теорию мира с квантовой теорией, а из эксперимента следует, что координата и импульс могут измеряться лишь неточно. Мы спрашиваем себя, имеет ли смысл понятие точного положения частицы или точного ее импульса. Классическая теория отвечает «да», а квантовая — «нет». Но это само по себе не означает, что классическая физика ошибается.
Когда была открыта новая, квантовая, механика, приверженцы классической теории, т. е. все физики, кроме Гейзенберга, Шредингера и Борна, говорили: «Что же хорошего в ней, в вашей теории, раз она не может ответить на простейшие вопросы: каково точное положение частицы? Через какую щель она проскочит? и другие». Ответ Гейзенберга гласил: «Я не обязан отвечать на такие вопросы, ибо вы не можете их задать экспериментально». Иначе говоря, отвечать — означало бы делать то, что делать необязательно. Рассмотрим две теории, (А) и (Б). Теория (А) содержит в себе идею, которую нельзя проверить непосредственно, но которая используется в анализе; теория (Б) этой идеи не содержит. Если их предсказания расходятся, то нельзя утверждать, что теория (Б) ошибочна на том основании, что она не может объяснить идею из теории (А); ведь эта идея как раз из тех вещей, которые нельзя непосредственно проверить.
Ну что ж! Хорошо, конечно, знать, какие из идей экспериментальной проверке не поддаются, но нет необходимости отбрасывать их все. Неверно же, что науку можно создавать только из тех понятий, которые прямо связаны с опытом. Ведь в самой квантовой механике есть и амплитуда волновой функции, и потенциал, и многие другие умственные построения, не поддающиеся прямому измерению. Основа науки — в ее способности предвидеть. Предвидеть — это значит сообщать, что случится в опыте, который никогда прежде не ставился. Как этого можно добиться? Предполагая, что мы независимо от эксперимента знаем, что произойдет, мы экстраполируем опыт, выводим его в область, в которой он не ставился. Мы расширяем свои представления до пределов, в которых они никогда не проверялись. Если этого не сделано — никакого предсказания нет. Поэтому вполне разумно было когда-то физику-классику в счастливом неведении предполагать, что понятие положения, бесспорно имеющее смысл в футболе, имеет какой-то смысл и для электрона. Это была не глупость. Это была разумная процедура. А теперь мы, например, говорим, что закон относительности верен при любых энергиях, а ведь в один прекрасный день явится кто-нибудь и объяснит, насколько мы глупы. Мы не догадаемся, в каком месте мы совершаем «глупость», покуда не «вырастем над собой»; вся проблема сводится к тому, как и когда нам это удастся. Единственный же способ обнаружить, в чем мы ошибаемся, это понять, в чем состоят наши предсказания. Так что без умственных построений не обойтись.
Мы уже делали ряд замечаний о недетерминированности квантовой механики, т. е. о том, что она не способна предсказывать, что произойдет в данных физических условиях, как бы аккуратно они ни были на опыте осуществлены. Если атом находится в возбужденном состоянии, собираясь излучить фотон, мы не можем сказать, когда это случится; существует конечная амплитуда вероятности испустить фотон в любой момент, и только эту вероятность мы и можем предвидеть. Мы не можем точно предсказывать будущее. На этой основе и высказываются разного рода глупости о неопределенности всех явлений в мире, возникают вопросы о свободе воли частиц и т. д.
Следует, конечно, подчеркнуть, что и классическая физика была в каком-то смысле недетерминированной. Обычно думают, что недетерминированность, невозможность предсказать будущее — это особенность квантовой механики, и именно с ней связывают возникновение представлений о свободе воли и т. д. Но если бы даже наш мир был классическим, т. е. если бы законы механики были классическими, все равно из этого не следует, что те же или какие-то аналогичные представления не возникли бы. Да, конечно, с точки зрения классики, узнав местоположение и скорость всех частиц в мире (или в сосуде с газом), можно точно предсказать, что будет дальше. В этом смысле классический мир детерминирован. Но представьте теперь, что наша точность ограничена и что мы не знаем точно положение только одного из атомов; знаем, скажем, его с ошибкой в одну миллиардную. Тогда если он столкнется с другим атомом, неопределенность в знании его координат после столкновения возрастет. А следующее столкновение еще сильней увеличит ошибку. Так что если сначала ошибка и была еле заметной, то все равно вскоре она вырастет до огромнейшей неопределенности. Вот вам пример: вода, падая с плотины, брызжет во все стороны. Подойдите поближе, и на ваш нос тоже упадет несколько брызг. Это кажется совершеннейшей случайностью, хотя поведение воды может быть предсказано на основе чисто классических законов. Точное положение всех капель зависит от мельчайших колебаний потока воды перед плотиной. Но как оно зависит? Еле заметные нерегулярности в падении воды усиливаются и приводят к полной случайности движений. Ясно, что мы не можем по-настоящему предвидеть положение капель, если не знаем движения воды абсолютно точно.
Правильнее будет сказать, что для данной точности (сколь угодно большой, но конечной) можно всегда указать такой большой промежуток времени, что для него становится невозможным сделать предсказания. И этот промежуток (в этом вся соль) не так уж велик. Он не равен миллиону лет при точности в одну миллиардную! Время с уменьшением ошибки растет только логарифмически, и оказывается, что за очень и очень малое время вся наша информация теряется. Если точность равна даже одной миллиард-миллиард-миллиардной (ставьте сколько угодно миллиардов, но только когда-нибудь остановитесь!), все равно можно указать промежуток времени, меньший чем время, нужное для того, чтобы произвести измерения с такой огромной точностью, после которого уже невозможно будет предугадывать, что случится! Поэтому нечестно говорить, что уже в видимой свободе и недетерминированности человеческого мышления мы видим доказательства невозможности его изучения в рамках классической «детерминистской» физики и приветствовать квантовую механику как избавительницу нашего духа от «абсолютно механистической» Вселенной. С практической точки зрения «детерминизм» отсутствовал и в классической механике.