Настройки шрифта

| |

Фон

| | | |

 

Химические формулы трех классов органических веществ, гидрокарбонат, липид, протеин.

С развитием соответствующих аналити­ческих методик в первых декадах XIX в. хи­мики обнаружили, что органические веще­ства состоят главным образом из углерода, водорода, кислорода и азота. Вскоре они вы­явили и последовательность сочетания ато­мов, при котором эти вещества приобретают свойства органической субстанции.

Во второй половине XIX в. появилось уже множество синтезированных органических ве­ществ; органическая химия не оставалась бо­лее наукой о веществах, образованных жиз­ненными формами. Однако деление химии как науки на две части оставалось; только органи­ческая химия стала именоваться «химией уг­леродных соединений». Жизнь как таковая уже не связывалась с ней.

И все же для виталистов оставалось нема­лое поле боя. Синтетические органические вещества были в XIX в. достаточно просты­ми. В живой материи наличествовали столь сложные вещества, что ни один тогдашний химик не решился бы их воспроизвести.

Более сложные вещества распадаются на три общие группы, как показал англий­ский физиолог Уильям Прут (1785-1850). В 1827 г. он впервые назвал эти группы: гидрокарбонаты (углеводы), липиды (жиры), протеины (белки). Гидрокарбонаты, вклю­чающие сахара, крахмаль!, целлюлозу, со­ставлены из углерода, водорода и кислорода, как и липиды (включающие жиры и масла). Гидрокарбонаты, впрочем, относи­тельно богаты кислородом, в то время как липиды бедны им. Гидрокарбонаты либо ра­створимы в воде, либо растворимы первона­чально в кислотах, в то время как липиды нерастворимы в воде.

Протеины, однако, наиболее сложные из этих трех групп, наиболее легко разрушае­мые, а также являют собой саму характерис­тику жизни. Протеины содержат азот и серу, а также углерод, водород, кислород и, хотя обычно растворимы в воде, коагулируют и становятся нерастворимыми при общем нагре­вании. Поначалу их называли альбуминопо-добными субстанциями, поскольку единствен­ным общеизвестным примером был белок куриного яйца (по-латински «альбумин»). В 1838 г. голландский химик Жерар Джоан Мюльдер, понимая первозданную важность альбумина, назвал протеины этим словом, ко­торое является калькой с греческого оборота «имеющий первостепенную важность».

В XIX в. виталисты сфокусировали вни­мание и надежды не просто на органических веществах, но на молекуле протеина.

Развивающаяся органическая химия так­же внесла вклад в эволюционную концеп­цию. Все виды живых организмов состоят из тех же самых классов органических веществ: гидрокарбонатов, липидов, протеинов. Они различаются от вида к виду, но различия малы. Образно выражаясь, кокосовая пальма и корова — существа совершенно разные, но масло кокосовое и коровье отличаются лишь в некоторых деталях.

Более того, ученым в середине XIX в. ста­ло ясно, что сложную структуру гидрокарбонатов, липидов, протеинов можно в процессе пищеварения разложить на относительно про­стые «кирпичики». Эти кирпичики одни и те же для всех видов, и все отличия сосредотачи­ваются в способе их комбинации. В процессе потребления одним организмом других (про­цессе пищеварения) кирпичики складываются в сложные вещества, которые и составляют суть питания.

С химической точки зрения, жизнь во всех вариациях, несмотря на разительные внешние различия, одна и та же. А если так, то эволюционные изменения одних видов в другие — дело деталей, и эта точка зрения утвердила правдоподобность эволюционной концепции.

Ткани и эмбрионы

Ни биолог, ни химик не должен зависеть от чего-либо чуждого жизни, чтобы сделать заключение о единстве всего живого. Разви­вающееся техническое усовершенствование микроскопа наконец-то сделало тайны жиз­ни видимыми.

Первые «микроскописты», увлекшись мно­гочисленными деталями, начинали фантазировать. К примеру, они переносили в действи­тельность нарисованные своим воображением человеческие фигуры (гомункулусы) в очерта­ния человеческого семени.

Они также предположили, что разреши­тельной способности жизни в мельчайших ее формах нет предела. Если яйцо иди спермато­зоид уже заключает в себе крошечную жизнь, то в оболочке мельчайшего организма может быть заключен организм еще более мелкий, который в определенный момент станет от­прыском родительского и продолжит это дробление до бесконечности. Некоторые уче­ные даже пытались подсчитать, сколько имен­но гомункулусов может содержаться внутри бесконечно уменьшающихся, вложенных друг в друга фигур самовоспроизводящихся орга­низмов. Они гадали, не придет ли конец чело­вечеству, когда истощатся эти заключенные внутри друг друга генерации. Эта доктрина «преформации» стала антиподом эволюцион­ной доктрины; следуя ей, все возможные чле­ны видов уже существовали изначально внутри первого вида, и нет причины предпола­гать изменение (эволюцию) видового разнооб­разия в природе.

Главная и первая атака на эту теорию по­следовала со стороны немецкого физиолога Каспара Фридриха Вольфа (1734 — 1794). В опубликованном в 1759 г. труде он описы­вал свои наблюдения за развитием растений. Он отмечал, что конус роста побега растения состоит из недифференцированных, генерализованных структур. По мере роста ткани специализируются, и самый кончик конуса наконец-то развивается в цветочную почку, в то время как другая точка роста (полнос­тью неразличимая вначале) развивается в листовую почку. Позже он экстраполировал свои наблюдения на животный мир. Недиф­ференцированная ткань через этапы посте­пенной специализации дает начало росту различных абдоминальных органов. Это и была доктрина эпигенеза, впервые названная так Уильямом Харвеем в 1651 г. в его книге по эмбриогенезу животных.

С его точки зрения, все существа, на­сколько бы различно они ни выглядели, на начальной стадии развиваются из сгустков живой материи и сходны по происхождению. Живые существа не могут развиваться пусть из крошечного, но уже специализированно­го органа или организма.

Даже полноразвитые организмы не столь различны, как может показаться при деталь­ном изучении. Французский физиолог Мари Франсуа Ксавье Биша (1771 — 1802), работая с микроскопом, показал, что различные органы состоят из нескольких компонентов разного внешнего вида. Эти компоненты, наименованные «тканями», стали основой науки гистологии. Выяснилось, что суще­ствует ограниченное число видов тканей. (Самые жизненно важные из них в живот­ном организме — эпителий, соединительная ткань, мускульная ткань и нервная ткань.)

Все органы состоят из каких-либо тканей. Если внешне живые организмы сильно отли­чаются, то ткани у них у всех одни и те же.

Как было уже упомянуто выше, еще в XVII в. Хук отметил, что пробковая ткань делится -на некие прямоугольные составля­ющие, которые Хук назвал клетками. Клет­ки были пустотелыми, поскольку пробка — мертвая ткань. Более поздние исследовате­ли, изучая живую ткань, пришли к выводу, что и она состоит из крошечных, окружен­ных степками клеток.

В живой ткани клетки не пустотелые и на­полнены желатиноподобной жидкостью. Эта жидкость получила свое наименование бла­годаря чешскому физиологу Яну Эвангелисте Пуркине (1787-1869). В 1839 г. он назвал живой эмбриональный материал, за­ключенный в яйце, протоплазмой, что в пе­реводе с греческого означает «первичная». Немецкий ботаник Хуго фон Мол в следую­щем году ввел этот термин в общее употреб­ление. Хотя уже было известно, что клетки тканей отнюдь не пустотелые, этот термин сохранился.

Клетки все чаще обнаруживали в различ­ных тканях, и биологи постепенно признали их универсальность. Это решение выкрис­таллизовалось в 1838 г., когда немецкий бо­таник Маттиас Якоб Шлейден (1804—1881) в своем труде написал, что все растения со­стоят из клеток и что клетка — это универ­сальная единица жизни; что именно из единственной клетки вырастает весь живой орга­низм.

В следующем году немецкий физиолог Теодор Шванн (1810—1882) продолжил эту идею. Он указал, что все животные, так же как растения, состоят из клеток; что каждая клетка окружена мембраной, отделяющей ее от остального мира. Обычно Шлейден и Шванн считаются отцами клеточной теории, хотя в нее внесли вклад и другие ученые, и с их имен начинается наука цитология.

Предположение, что клетка является пер­вичной ячейкой жизни, приведет к следую­щему предположению: если это так, то для того, чтобы она была живым организмом, не нужны конгломераты в виде множества кле­ток. Немецкий зоолог Карл Теодор Эрнст фон Зибольд (1804 — 1885) показал, что не­которые клетки и в самом деле способны к независимому существованию.

В 1845 г. Зибольд опубликовал работу по сравнительной анатомии, которая в деталях рассматривала протозоа (простейших) кро­шечных животных, впервые обнаруженных ван Левенгуком. Каждая клетка простейшего была окружена единой мембраной, и внутри этой клетки имелись все приспособления, не­обходимые для жизни. Она поглощала пищу, переваривала ее, ассимилировала и выводила отбросы. Клетка простейшего ощущала окру­жение и соответственно реагировала. Она рос­ла, делилась надвое, воспроизводя себя. Ко­нечно, клетка простейшего больше по размеру и устроена сложнее, чем клетки тканей много­клеточных организмов, — все это необходимо для автономного существования.

Для демонстрации важности индивиду­альных клеток можно использовать много­клеточные организмы. Русский биолог Карл Эрнст фон Байер (1792-1876) в 1827 г. от­крыл внутри граафова фолликула человечес­кую яйцеклетку и продолжил изучать про­цесс пути ее развития в живое существо — зародыш.

Затем он опубликовал двухтомный труд по этой теме, который и стал началом и фун­даментом науки эмбриологии (изучения за­родышей). Он возродил теорию Вольфа по эпигенезу (в свое время совершенно проиг­норированную), более детализированно по­казав, что развивающееся яйцо имеет не­сколько слоев ткани, каждый из которых поначалу не дифференцирован, но из каждо­го слоя развиваются специализированные органы. Эти слои он назвал зародышевыми.

Было решено, что таких слоев три, и в 1845 г. немецкий физиолог Роберт Ремак (1815 — 1865) дал им названия, которыми оперируют по сегодняшний день. Это экто­дерма (от греческого «наружная кожа»), ме­зодерма («средняя кожа») и эндодерма («внутренняя кожа»).

Швейцарский физиолог Рудольф Альберт фон Келликер (1817-1905) указал в 1840-х годах, что яйцеклетка и сперматозоид — это индивидуальные клетки. (Позже немецкий зоолог Карл Гегенбар (1826— 1903) продемон­стрировал, что даже крупные яйца птиц — это всего лишь клетка.) Слияние яйцеклетки и\' сперматозоида формирует оплодотворенное яйцо, которое, как показал Келликер, все еще является отдельной клеткой. Это слияние, или оплодотворение, — начало развития эмбрио­на. Хотя биологи к середине XIX в. сформу­лировали понятие оплодотворения, в деталях оно не было описано. Лишь в 1879 г. швейцар­ский зоолог Германн Фоль наблюдал оплодо­творение икры у рыб.

К 1861 г. Келликер опубликовал учебник по эмбриологии, в котором работа Байера ин­терпретировалась в свете клеточной теории. Каждый многоклеточный организм начинает свою жизнь как одноклеточный — оплодотво­ренное яйцо. По мере многократного деления оплодотворенного яйца получающиеся клетки не сильно отличаются от первоначальной. Однако постепенно они дифференцируются настолько, что начинают напоминать структу­ры взрослого организма. Это эпигенез, реду­цированный до клеточных форм.

Концепция единства жизни постепенно укреплялась. Вряд ли можно было бы обна­ружить различие между оплодотворенной яйцеклеткой человека, жирафа и макрели, но по мере развития эмбриона они постепен­но нарастают. Небольшие структуры в эмб­рионе, поначалу едва различимые, могут раз­виться в одном случае в крыло, в другом случае — в руку, в третьем — в лапу, в четвертом — в плавник. Байер весьма нагляд­но доказал, что взаимосвязи между живот­ными можно проследить в сравнении эмбри­онов разных животных. Поэтому Байер но праву считается основоположником сравни­тельной эмбриологии.

Меняясь от вида к виду, через процесс клеточного развития, шло эволюционное раз­витие животного и растительного миров. Байер показал, что ранние позвоночные эм­брионы обладали нотохордой. Такой струк­турой характеризуются рыбоподобные при­митивные существа. Впервые их описал в 1860-х годах русский зоолог Александр Ко­валевский (1840-1901).

У позвоночных хорду заменил позвоноч­ник. Тем не менее, даже временное наличие хорды доказывает родственность современ­ных позвоночных животным, описанным Ко­валевским. Можно проследить взаимосвязь современных позвоночных, включая челове­ка, с древними хордовыми и их происхожде­ние от общего примитивного предка.

От развития нескольких различных обла­стей — сравнительной анатомии, палеонто­логии, биохимии, гистологии, цитологии и эмбриологии — исходила в середине XIX в. настоятельная необходимость единой эволю­ционной теории. Требовалось выработать удовлетворительный механизм эволюции.



Глава 6 Эволюция

Естественный отбор

Ученым, который открыл научному миру эволюционный механизм, был английский на­туралист Чарлз Роберт Дарвин (1809—1882), внук Эразма Дарвина, упомянутого выше.

В молодости Дарвин пытался изучать меди­цину, а позже подумывал о посвящении в цер­ковный сан; однако ни в том, ни в другом не преуспел. Его единственной страстью было ес­тествознание, натуральная история — увлече­ние, которое переросло в глубокий научный интерес. В 1831 г. он отправился на корабле «Бигль» в кругосветное плавание с научной экспедицией, где ему было предложено место натуралиста.

Это путешествие заняло пять лет, и, хотя во время плавания Дарвин испытывал при­ступы страшной морской болезни, кругосвет­ка сделала из него гениального натуралиста. В истории биологии, благодаря ему, путеше­ствие на «Бигле» также стало самой знаме­нитой исследовательской экспедицией.

Дарвин был почитателем геологических изысканий Льеля и имел научное представ­ление об истории Земли и геологии. Во вре­мя путешествия он не мог не отметить сме­няемости видов — каждый из последующих видов слегка отличался от вытесненного — вдоль побережья Южной Америки по на­правлению к югу.

Наиболее впечатлили его наблюдения за животным миром Галапагосских островов во время пятинедельного пребывания на них. В частности, Дарвин изучал группу птиц рода, до сих пор так и именуемого дарви­новским вьюрком. Представители этого рода делятся на 14 различных видов и все оби­тают на малоизвестной группе островов не­подалеку от побережья Эквадора. Было бы странным предположить, что все 14 видов были «созданы» только для этих островов.

Дарвин обнаружил, что материковые виды вьюрка колонизировали остров задол­го до современных ему лет и что постепенно последующие поколения тех вьюрков разде­лились на близкие друг другу виды. Некото­рые виды специализировались на определен­ных семенах то одного, то другого сорта; третьи начали специализироваться на поеда­нии насекомых. И у каждого вида постепен­но развились своя форма клюва, свой размер тела, своя особая схема организации. На ма­терике первобытный вьюрок не дифференци­ровался, поскольку испытывал пресс конку­ренции со стороны других птиц отличных родов. На Галапагосах пришельцы нашли пустые ниши обитания.

Однако на один вопрос ответа не было. Что вызвало такие эволюционные измене­ния? Что сделало вьюрков из растительноядных насекомоядными? Дарвин не мог вос­принять ламаркианского предположения, что птицы «попробовали» насекомых, им понра­вилось и они передали эту особенность сво­ему потомству. К несчастью, другого ответа у Дарвина не нашлось.

В 1838 г., два года спустя после возвра­щения в Англию, Дарвин случайно прочел научный труд, названный «Эссе о принципах формирования народонаселения», написан­ный 40 годами ранее английским экономис­том Томасом Робертом Мальтусом (1766 — 1834). В своей книге тот утверждал, что народонаселение всегда растет быстрее, чем производство питания, и что численность населения саморегулируется либо голодом, либо болезнями, либо войнами.

Дарвин предположил, что те же принци­пы приложимы к другим формам жизни. Та часть популяции, которая погибает, являет собой естественный отсев в результате борь­бы за пищу. К примеру, первые вьюрки на Галапагосах бесконтрольно размножались и вскоре превысили в потреблении возмож­ный урожай семян. Начался голод. И воз­можно, какие-то вьюрки попробовали есть более крупные семена или начали глотать насекомых. Те, которые не усвоили новых привычек, были обречены на голод и выми­рание.

Другими словами, слепой пресс окружаю­щей среды стал агентом формирования но­вых видов и каждый вид отличался от дру­гого и от общего предка. Как говорится, сама природа выбирает выживших — это и есть естественный отбор.

Далее Дарвин наблюдал, каким образом происходят необходимые изменения. С це­лью изучить влияние искусственного отбора он начал разводить голубей и обнаружил в потомстве небольшие отклонения внешних признаков: вариации по размеру, цвету, при­вычкам. Избирая направленно одну или дру­гую особенность, можно было производить селекцию голубей. Таким же образом выво­дили наилучшие породы овец, лошадей, ро­гатого скота, странные и причудливые поро­ды собак и аквариумных рыбок.

Природа на определенных этапах заменяла человека и в течение более длительного пери­ода в своих целях «выводила» породы — то есть приспосабливала виды к меняющимся условиям среды.

Дарвин изучил также «половую селек­цию», при которой самка выбирала наиболее полноценного самца. Ученый отметил рудиментарность некоторых составных частей скелета, на основе этого доказал принадлеж­ность, например, китов — к млекопитаю­щим, основываясь на оставшихся костях зад­них конечностей, а змей — к позвоночным пресмыкающимся, когда-то ходившим на че­тырех конечностях.

Дарвин бесконечно дополнял и совершен­ствовал свою теорию и набор аргументов в ее пользу. В 1844 г. на основе собранных фак­тов он начал писать научный труд.

Тем временем на Дальнем Востоке дру­гой английский натуралист, Альфред Рассел Уэллес, рассматривал ту же проблему. Как и Дарвин, он провел множество времени за собиранием фактов, включая путешествие в Южную Америку между 1848-м и 1852 гг. В 1854 г., побывав на Малайском архипелаге и в Восточной Индии, он был поражен раз­личием между видами млекопитающих Азии и Австралии. Позже он провел по карте ли­нию, разделяющую эти два зоогеографичес-ких региона. Эта линия, называемая его име­нем, проходит по глубоководному каналу, разделяющему острова Борнео и Целебес.

Уэллесу было ясно, что австралийские виды млекопитающих более примитивны, чем азиатские. Почему они сохранились на Авст­ралийском континенте в неприкосновенности? Уэллес предположил, что Австралийский кон­тинент отделился и отдрейфовал от общего когда-то материка до того, как азиатские виды претерпели эволюцию. Страдая от приступов болезни, Уэллес в два дня письменно изложил свои предположения и отослал их на суд Дарвина. Дарвин был поражен как ударом молнии общностью теорий своей и Уэллеса. В 1858 г. и труд Уэллеса, и выводы Дарвина были опубликованы в «Журнале изысканий Линнеевского общества».

В следующем году Дарвин опубликовал свою книгу «О происхождении видов путем естественного отбора, или Сохранение избран­ных рас в борьбе за выживание». Обычно этот труд известен как «Происхождение видов».

Ученый мир с нетерпением ожидал этот труд. Поначалу было опубликовано всего 1250 копий, и все расхватаны в одночасье. И в наше время этот труд не потерял своей актуальности.

Борьба ученых умов вокруг эволюции

Без сомнения, «Происхождение видов» стала наиболее важной книгой в истории био­логии. Множество ветвей науки вдруг стали вновь актуальными и исполненными значения с точки зрения эволюции путем естественного отбора. Концепция сделала рациональными все собранные данные по таксономии, эмбри­ологии, сравнительной анатомии, палеонтоло­гии. Биология в целом стала не просто собранием фактов; она стала организованной наукой, базирующейся на широкой и очень полезной теории.

Однако приняли труд и концепцию Дарви­на не все, и не все принявшие — сразу. Осо­бенно много обвинений посыпалось со сторо­ны почитателей буквы и слова Библии - было невозможно принять сразу, что мир и че­ловечество созданы не Богом. Даже среди людей нерелигиозных появилось немало про­тивников предположения, что все сущее — ре­зультат слепого и неодухотворенного случая.

Английский зоолог Ричард Оуэн (1804 — 1892), лидер оппозиции, был одновременно последователем Кювье в его науке восстанов­ления вымерших животных по ископаемым останкам. Он сопротивлялся не просто кон­цепции эволюции, но мысли, что избранные живут на планете по воле случая. Он считал, что должна быть какая-то внутренняя воля Природы.

Обычно Дарвин сам не отстаивал своих теорий. Однако английский биолог Томас Генри Гексли (1825— 1895) взял на себя роль его защитника. Гексли, кроме того, что был блестящим популяризатором науки, наводил ужас на противников своим талантом орато­ра. Он сам себя именовал «дарвиновским бульдогом».

Поначалу дарвинизм не был принят во Франции, однако Германия в целом восприня­ла идеи ученого. Немецкий натуралист Эрнст Генрих Геккель (1834-1919) был сторонни­ком Дарвина. Он увидел в развивающемся эм­брионе виртуальную сжатую модель эволю­ции. К примеру, млекопитающие начинают Жизнь в виде единственной клетки, как и про­стейшие, затем развиваются в двуслойные организмы, подобные медузе, затем уже — в трехслойные, как какой-нибудь примитивный червь. В ходе последующего развития эмбри­он млекопитающего вырабатывает, а затем те­ряет хорду, потом приобретает и теряет струк­туры, характерные для рыб. С этой точки зрения Геккель имел оппонента в лице эмбри­олога Байера, который пришел к тем же выво­дам, но не принял дарвинизма. Современные биологи также не принимают выводы и кон­цепцию Геккеля как единственно верную кар­тину хода эволюции.

Американский ботаник Аса Грей (1810 — 1888) стал наиболее активным защитником дарвинизма в Америке. Религиозный пропо­ведник, он не мог быть обвинен в атеизме, тем самым его аргументация приобретала до­полнительную силу. Его оппонентом в Аме­рике стал натуралист Жан-Луи Родольф Агассис. Агассис заслужил научную репута­цию изучением ископаемых рыб, но больше всего популярности ему принесла концепция прохождения в давно минувшие времена лед­ников в регионах, где никто из современни­ков их увидеть не мог. Агассис не принял дарвинизма в своем пиетете перед Природой.



Происхождение человека

Самый уязвимый момент в дарвинизме ка­сается человека. Сам Дарвин завуалировал этот момент в своем «Происхождении ви­дов», да и его соавтор, Уэллес, в конце кон­цов пришел к выводу, что человек не подвержен эволюционным процессам. Однако было бы нелогично предполагать, что эволюция коснулась всех видов, кроме человека.

В 1838 г. французский археолог Жак Бушеде Кревекер де Перте (1788-1868) от­крыл в северной Франции стоянку древнего человека. К тому времени стало возможно определить возраст каменных топоров, най­денных на стоянке, и человеческих останков. Таким образом, стало научно очевидно, что не только Земля, но и человек насчитывает в своей истории гораздо более тысяч лет, чем те б тысяч, о которых говорит Библия. Пуб­ликация этих данных вызвала фурор. Фран­цузские биологи, все еще находившиеся под влиянием уже умершего Кювье, отказались принимать эти изыскания. Английские уче­ные встали на сторону Буше де Перте.

А четыре года спустя геолог Лаэлл, ис­пользовав находки Буше де Перте, опубли­ковал книгу «Античная история человека», в которой не только поддерживал теорию дар­винизма, но и обосновывал ее применение к человеку. Гексли также написал книгу, взяв за основу эту позицию.

В 1871 г. Дарвин открыто выступил с тео­рией эволюции человека от млекопитающих, опубликовав вторую книгу — «Происхож­дение человека». В ней он рассматривал рудиментарные органы человека как доказа­тельства эволюционных изменений. (В человеческом теле имеется целый ряд рудиментар­ных органов. Аппендикс — это остаточный орган, некогда используемый для запасания пищи. Этому запасу пищи в те времена пред­назначалось проходить долгую бактериаль­ную обработку. В основании спины у челове­ка имеются четыре косточки, которые были когда-то частью хвоста; имеются также ныне совершенно бесполезные мускулы, предназна­чавшиеся для движения ушей, и т. д.)

В 1856 г. в Германии, в долине Неандерталь, был раскопан древний человек, вернее, обнаружен его череп. Этот череп, совершенно очевидно, принадлежал примитивному, обезь­яноподобному человеку. Обнаружен он был в слое, насчитывавшем много тысяч лет. И сра­зу же ученый мир потерялся в догадках: был ли то примитивный вид человека, который позже превратился в человека современного, либо обычный дикарь древности, возможно с обезображенным болезнью скелетом и генети­ческой деформацией черепа?

Выдающийся авторитет ученого мира тех лет, немецкий врач Рудольф Биршоу (1821 — 1902), поддержал последнюю версию. В про­тивоположность ему, французский хирург Пол Брока (1824 — 1880), наиболее авторитет­ный эксперт по структуре черепа того време­ни, заявил, что ни здоровый, ни одичавший, ни больной человек новой формации не может быть обладателем такого черепа.

Для того чтобы уладить все эти недоуме­ния, требовалась следующая находка: она была бы связующим и до поры недостающим звеном между человеком и человекоподобной обезьяной. Такие недостающие звенья были частыми в биологической науке. К примеру, в 1861 г. Британский музей приобрел иско­паемые останки существа, внешне напомина­ющего птицу, а также отпечатки перьев в камне. У этого существа, однако, были зубы и хвост, как у ящерицы. Это стало ярчайшим доказательством того, что птицы эволюцио­нировали от рептилий.

Однако поиски необходимого звена в происхождении человека не удавались на протяжении ряда десятилетий. Успех при­шел к голландскому палеонтологу Мари-Эжен-Франсуа-Томасу Дюбуа (1858—1940). Он был одержим идеей поиска недостающе­го звена и считал, что искать нужно либо в Африке, где по сей день обитают шимпанзе и гориллы, либо в Юго-Восточной Азии, где обитают гиббоны и орангутаны.

В 1889 г. Дюбуа был призван правитель­ством страны в экспедицию на остров Ява (тогда — голландская колония). В течение не­скольких лет он отыскал верхнюю часть чере­па, тазовую кость, а также два зуба того, что, вне сомнения, было когда-то примитивным че­ловеком. Череп был больше любого обезьянь­его, но меньше черепа современного человека. Зубы также занимали промежуточное положе­ние между зубами человекоподобной обезьяны и человека. Дюбуа, опубликовав в 1894 г. ре­зультаты своих исследований, назвал суще­ство, которому принадлежали останки, пите­кантроп прямоходячий.

Другие подобные находки были сделаны в Китае и Африке, так что отыскалось сра­зу несколько недостающих звеньев. Теперь аргументы как в пользу эволюции в целом, так и в пользу эволюции человека в частно­сти стили неоспоримы. Безусловные против­ники теории эволюции остались, пожалуй, только среди религиозных фундаменталис­тов. В наше время трудно вообразить авто­ритетного биолога, который являлся бы ан­тиэволюционистом.

«Боковые направления» эволюции

Если антиэволюционисты были все же не правы, то напрасно впадали в радостный энту­зиазм слишком горячие приверженцы тео­рии, которые отыскивали признаки эволюции даже в тех областях, куда она не проникала. Так, английский философ Герберт Спенсер (1820 — 1903), наработавший эволюционист­ские идеи еще до выхода книги Дарвина, ухва­тился за эту книгу и взял ее выкладки в дока­зательство своих рассуждений о человеческом обществе и культуре. Таким образом, он поло­жил начало науке социологии.

Спенсер утверждал, что все общество и культура в целом начинались на весьма при­митивном уровне, а затем эволюционировали до современного сложного состояния. Он по­пуляризировал термин «эволюция» (которым Дарвин предпочитал не пользоваться), а также фразу «выживание наиболее приспособ­ленных». Спенсеру представлялось, что все че­ловеческие индивидуумы находятся в постоян­ной борьбе за выживание и слабейшие погибают в ней. Спенсер счел их гибель неизбежным следствием эволюции и прогресса и выдвинул теорию, что следует «помочь» естественному от­севу среди безработных и прочих неблагополуч­ных представителей общества, а не устраивать для них биржи труда и приюты. Он провоз­гласил, что благотворительность, милосердие и социальная помощь вредят прогрессу.

Это, однако, мешало популяризации дар­виновской теории, поскольку Спенсер не учел того, что для осуществления эволюции нужен долгий исторический путь. Единственным же путем, который признавал Спенсер, было на­следственное принятие приобретенных харак­теристик (по Ламарку). Он игнорировал тот факт, что, многие члены человеческого обще­ства привязаны к своим больным и неблагопо­лучным собратьям и страстно не хотели бы их потерять. Кроме того, история цивилизации доказывает преимущество гуманного общества над обществом, построенным на взаимоотно­шениях «хищник —жертва».

И все-таки спенсерианство повлияло на историю и в годы, предшествующие Первой мировой войне, дало карты в руки национа­листам и милитаристам, ведь любая война оправдана, если она помогает выживанию наиболее приспособленных. К счастью, сей­час эти теории забыты.

Еще одну теорию развил английский ант­рополог Фрэнсис Гэлтон (1822 — 1911), дво­юродный брат Дарвина. Гэлтон в молодые годы посвящал себя метеорологии, но после выхода книги своего знаменитого кузена об­ратился -1с биологии. Он интересовался во­просами наследственности и первым обратил внимание на важность изучения идентичных (однояйцевых) близнецов. Именно у них на­столько одинаковы наследственные призна­ки, что разница может быть отнесена цели­ком к влиянию окружающей среды.

Изучая случаи рождения детей с много­обещающими задатками, Гэлтон должен был признать, что они наследуются. Он предчув­ствовал, что таланты и другие желаемые ха­рактеристики могут быть заложены при зачатии. В 1883 г. он выдвинул термин евге­ника (от греческого «хорошее рождение») для обозначения метода, который выработал.

К сожалению, чем больше собиралось ин­формации о механизме наследования, тем ме­нее уверены были биологи в успехе улучше­ния расы путем селективного скрещивания (так сказать, искусственно направленной эво­люции). Выяснялось, что это крайне сложная материя. В то время как евгеника остается одной из ветвей биологии наследственности, так называемые евгенисты, которые взяли на вооружение ненаучную, расистскую часть те­ории, время от времени размахивают знаме­нем превосходящей расы.



Глава 7 Основы генетики

Тупиковые вопросы дарвинизма



Причина ошибочного использования эво­люционной теории — природа механизма на­следования, который и до сих пор до конца не изучен и тем более не был понят в XIX в. Спенсер ожидал быстрых изменений в чело­веческом поведении, а Гэлтон воображал, что расу можно улучшить программой селек­тивного наследования из-за частичного био­логического невежества.

Непонимание природы механизма насле­дования было наиболее уязвимым местом дарвиновской теории. Дарвин предполагал, что существуют случайные вариации при­знаков у наследников любых видов живот­ных и что некоторые вариации, ввиду луч­шего приспособления к окружающей среде, в большей степени закрепятся у одних, чем у других. К примеру, юный жираф, родив­шийся с самой длинной шеей, лучше при­способлен к условиям и первый кандидат на выживание.

Но каким образом закрепится этот при­знак? Жираф с самой длинной шеей не обя­зательно найдет партнера со столь же длинной шеей; вполне возможно, что унаследуется короткая шея. Все эксперименты по скрещиванию животных укрепили уче­ных во мнении, что наследуемые признаки смешиваются в последующих поколениях; поэтому жираф с длинной шеей, скрещен­ный с жирафом с короткой шеей, даст по­коление с шеей средней длины.

Другими словами, все полезные и хорошо подходящие к условиям характеристики ус­редняются; они сведутся к невыдающемуся среднему уровню в результате случайного скрещивания; естественному отбору не оста­нется поля деятельности — соответственно, эволюционных изменений не произойдет.

Некоторые биологи приводили такие до­воды, но без особого успеха. Швейцарский ботаник Карл Вильгельм фон Нагели (1817 — 1891), поборник дарвинизма, предпо­ложил, что, для того чтобы эволюция пошла в каком-либо определенном направлении, должен произойти некий внутренний толчок.

Например, лошадь, как показали раскоп­ки, произошла от небольшого существа рос­том с собаку и с четырьмя пальцами на каждой конечности. Прошли века, и лошадь выросла в холке, окреп ее скелет, она один за другим теряла пальцы, пока не преврати­лась в непарнокопытное. Нагели предполо­жил, что какая-то сила толкала лошадь поэтому пути эволюции: она увеличивалась в размерах и шла к однопальцевой конечнос­ти, пока не стала бы слишком большой для выживания. Она уже не смогла бы прятать­ся от врагов и была обречена на вымирание. Эта теория получила название ортогенез, однако не была признана современными био­логами.

Горошек менделя

Решение проблемы связано с именем авст­рийского монаха и ботаника-любителя Грегора Иоганна Менделя (1822 — 1884). Мендель увлекался как математикой, так и биологией; соединив оба своих увлечения, он в течение восьми лет, начиная с 1857 г., скрещивал де­коративный горошек разных цветов.

Он искусственно опылял растения таким образом, чтобы в случае наследования харак­теристик они наследовались бы только от од­ного родителя. Он собирал и хранил семена, произведенные от самоопыленного сорта, за­тем высевал их отдельно и изучал распреде­ление характеристик в новом поколении.

Он обнаружил, что, если посеять семена от карликового сорта, вырастали только кар­ликовые растения. Семена, произошедшие от этого второго поколения, также давали толь­ко карликовые растения. Карликовые расте­ния горошка являлись в1 данном случае пря­мыми потомками.

Семена от высокорослых растений не все­гда вели себя аналогичным образом. Некото­рые высокорослые растения (составлявшие около трети произраставших в его саду) по­казали себя прямыми потомками, дающими одно за другим высокорослые поколения. Остальные давали разброс характеристик. Некоторые семена от этих высокорослых ра­стений давали высокие растения, а другие — карликовые. Всегда разброс был таковым, что высокорослых было вдвое больше, чем карликовых. Очевидно, что существовало два вида высокорослых растений: прямые потомки и непрямые потомки.

Мендель приближался к истине шаг за шагом. Он скрестил карликовые растения с высокорослыми растениями (истинными по­томками) и обнаружил, что каждый получен­ный в результате гибрид давал высокорослое растение. Итак, признак карликовости исчез.

Затем Мендель добился самоопыления каждого гибридного растения и изучил полу­ченные семена. Все гибридные растения оказа­лись непрямыми потомками. Около одной четверти семян, полученных от них, дали кар­ликовые растения, одна четверть — «прямые» высокие растения, а оставшаяся часть (поло­вина) дала «непрямые» высокие растения.

Мендель объяснил этот разброс тем, что каждое растение несет в своем генотипе два фактора, влияющих на рост как генный при­знак. Мужская часть генотипа несет один фак­тор, женская часть — второй. При скрещивании два фактора объединялись и новое поко­ление давало пару (по одному от каждого ро­дителя, если они получены от скрещивания этих двух родителей).

Схема распределения признаков наследственности в высоких и карликовых растениях:

1 - результат скрещивания истинных высоких растений с карликовыми, дающий гибриды либо неистинные высо­кие растения;

2 -- распределение признаков между истинными высоки­ми, карликовыми, гибридно-высокими потомками в про­порции 1:1:2.

В - высокие; к - карликовые; Вк - гибридно-высокие

Карликовые растения несут только признак карликовости, и, комби­нируя этот признак путем само- или искусст­венного опыления, можно получить только карликовые растения. «Прямые» (истинные) высокие растения несут только признак высокорослости, и комбинация дает только высо­кие растения.

Если «истинное высокое» растение скре­щивать с карликовым растением, «высокий» фактор комбинируется с признаком карли­ковости, и следующее поколение станет гиб­ридным. Все растения в этом поколении будут высокими, поскольку признак высоко­го роста — доминирующий, подавляющий карликовость. Однако фактор карликовости не исчезает.

Если такие гибриды либо перекрестноопыляемы, либо самоопыляемы, они неистинные потомки, поскольку несут в генотипе оба фак­тора, которые могут комбинироваться в широ­ком разнообразии способов (что диктуется только случаем). «Высокий» фактор может комбинироваться с другим «высоким» факто­ром, производя истинно высокорослое расте­ние. Это и происходит в одной четверти случаев. «Карликовый» признак может скомбинироваться с другим таким же, и получит­ся карликовое растение. Это также случается в одной четверти случаев. В оставшейся части комбинаций «высокий» признак комбинирует­ся с «карликовым» либо «карликовый» — с «высоким», производя неистинные (непря­мые) высокорослые растения.

Мендель пошел дальше, чтобы показать, что аналогичное распределение признаков характерно и для других показателей, а не только роста. Он доказал, что каждый экст­ремум характеристик удерживал в дальней­шем свою идентичность. Если в каком-либо поколении этот признак исчезал, то появлял­ся в последующем поколении.

Это был ключик к теории эволюции (хотя Мендель никогда и не думал о приложении своих выводов к этой теории), поскольку сделанные им выводы означали, что случай­ные вариации видов в течение времени не ус­реднялись, а то появлялись, то исчезали как наследственные признаки, пока естественный отбор не давал полное их использование.

Ответ на вопрос, отчего же эти признаки казались усредненными в последующих поко­лениях, был таков: при случайном скрещива­нии наследуемые характеристики на самом деле были комбинацией генных характерис­тик. Разные компоненты их могут наследо­ваться независимо, и, пока каждый признак наследуется в манере «да» или «нет», об­щий результат некоторых «да» и некоторых «нет» — эффект усредненности.

Выводы Менделя также повлияли на ев­генику. Выходило, что «вытравить» нежела­тельные характеристики не так уж просто: они не проявятся в одном последующем по­колении, однако проявятся в другом. Искус­ственный отбор — дело более тонкое и более длительное, чем предполагал Гэлтон.

Гендель педантично описал результаты своих опытов, но, понимая свое положение малоизвестного ботаника-любителя, счел бо­лее мудрым заручиться поддержкой авторитетного ученого. Поэтому в 1860 г. он отослал свои результаты на суд Нагели. Тот отнесся к творчеству Менделя весьма холодно. Ему по­казалось малоинтересным подсчитывать рас­щепление признаков у какого-то горошка: го­раздо более его влек мрачный мистицизм вселенских теорий вроде ортогенеза.

Мендель был разочарован. В 1866 г. он опубликовал свои заключения, однако без поддержки маститых ученых он остался неза­меченным. А между тем Мендель был осно­воположником науки, которую мы сейчас име­нуем генетикой, или изучением механизма наследования, но ни ему, ни кому-либо иному это еще не было известно в те времена.



Мутации

Во второй половине XIX в. перед ученым миром встала и еще одна проблема: в резуль­тате последних достижений физики длинная история Земли оказалась гораздо короче той, что представлялась. Закон сохранения энер­гии требовал разрешить вопрос: откуда приходит энергия Солнца? Тогда еще ничего не было известно ни о ядерной энергии, ни о радиоактивности. Можно было бы предполо­жить, что эволюция шла скачками, посколь­ку в свете открытий физики оказалось, что для постепенной «дарвинистской» эволюции попросту не хватает времени.

Голландский ботаник Хуго де Ври (1848—1935) был одним из сторонников эволюции скачков. К своей теории мутаций он пришел позже Менделя, но тем же пу­тем, наблюдая за растущими в собственном саду растениями. Он обнаружил, что инди­видуальные характеристики передаются из поколения в поколение без смешения и усреднения, причем в каждом поколении по­является новая разновидность растений од­ного и того же вида, отчетливо отличающа­яся от прочих, и она также закрепляется наследственно. Де Ври назвал эти внезап­ные изменения мутациями (по-латыни — «изменения»).

Такие скачкообразные изменения в гене­тике всегда были известны простым скотово­дам. К примеру, в Новой Англии в 1791 г. появилась закрепленная мутация коротконо­гой овцы. Ее закрепляли и разводили толь­ко потому, что она не могла перепрыгивать изгороди — а значит, облегчала задачу ско­товода. Однако скотоводы не были озабоче­ны теоретическими изысканиями, а ученые до поры до времени не вдавались в пробле­мы скотоводов.

Когда де Ври уже готовился опубликовать свои выводы, добросовестное изучение преды­дущих работ по теме открыло перед его изум­ленным взором 34-летней давности изыскания Менделя. Кроме того, еще двое ученых, немец Карл Э{5их Корренс и австриец Эрих фон Сейсенег, в том же году опубликовали работы, весьма сходные с работой де Ври. И все трое независимо процитировали выводы Менделя и привели свои в подтверждение его прозор­ливости.

Таким образом, были разрешены казавши­еся неразрешимыми вопросы дарвинизма.



Хромосомы



В XX в. законы Менделя приобрели еще большее значение.

Ученые, работавшие над клеточной тео­рией в течение XVIII и начала XIX в., не видели слишком многого, даже имея улуч­шенный микроскоп. Клетка — это прозрач­ное тело, следовательно, специалисты дол­жны были описать ее вдоль и поперек. Но они не видели в ней ядра — уплотнения в центре. Первым его обнаружил шотландец-ботаник Роберт Браун (1773 — 1858), сделав­ший предположение о ядре в 1831 г.

Семь лет спустя, когда Шлейден выдвинул клеточную теорию, он обратил особое внима­ние на ядро. Ученый догадался, что именно ядро связано с репродуктивной функцией, однако считал, что новые клетки «вырастают» прямо из его поверхности. К 1846 г. Нагели показал, что это неверно. И все же в первой части своего предположения Шлейден оказал­ся прав: именно ядро отвечало за деление. На­копленные знания требовали усовершенство­вания методики детального изучения строения клетки.

Методика пришла сама собою и совсем из иной области: из органической химии. Вслед за открытиями Бертло химики-органики на­чали разрабатывать методики синтеза орга­нических веществ, которых нет в природе. Многие из них были ярко окрашенными и в 1850-х годах положили начало гигантской индустрии синтетических красителей.

Если содержание клетки действительно гетерогенно, вполне возможно, что некото­рые части могут реагировать с определенным химическим агентом и абсорбировать его, в то время как другие части не могут. Если агент является красителем, то в результате некоторые части клетки будут окрашены, в то время как иные — нет. Благодаря такой методике можно наблюдать не замеченные прежде детали строения.

Наиболее известным в биологии экспери­ментатором в данной области является немец­кий цитолог Уолтер Флемминг (1843—1905). Он изучал животные клетки и обнаружил, что внутри ядра клетки имеются пятна материала, интенсивно абсорбируемые красителем. Они ярко выступают на бесцветном фоне. Флемминг назвал этот абсорбирующий материал хроматином (от греческого «цвет»).

Когда Флемминг окрашивал сектор расту­щей ткани, он убивал клетки, однако каждая из _>шх находилась на определенной стадии деления. В 1870-х годах Флемминг начал работать над изменениями в хроматиновом (окрашенном) материале, которые сопровож­дают прогрессивные изменения в делении клеток.

Он обнаружил, что, как только начался процесс деления клеток, окрашенный мате­риал разделился на короткие нитеобразные объекты, которые позже были названы хро­мосомами (окрашенными телами). Посколь­ку эти нитеобразные хромосомы характерны для делящихся клеток, Флемминг назвал процесс митозом (от греческого «нить»).

Другие изменения, сопровождающие на­чало митоза, демонстрировали звездообраз­ные фигуры (по-гречески «астра» — «звез­да»). Объекты были похожи на крошечные точки, окруженные тонкими, расходящими­ся во все стороны нитями. По окончании деления астры два объекта расходились к разным полюсам клетки. Тонкие нити будто натягивали хромосомы, которые группирова­лись посередине клетки.

В решающий момент деления каждая хро­мосома давала точную копию самой себя. Сдвоенные хромосомы впоследствии расхо­дились поврозь, но одной из каждого дупле­та—к каждому полюсу.

Клетка делилась, и посередине ее форми­ровалась мембрана. На месте одной мате­ринской клетки возникали две дочерние, каждая — с равным числом окрашенного материала (благодаря дублированию хромо­сом), таким образом, чтобы каждая хромосо­ма дочерней клетки присутствовала когда-то в материнской клетке. В 1882 г. Флемминг опубликовал свои наблюдения.

Далее работу продолжил бельгийский цитолог Эдуард ван Бенеден (1864 — 1910). В 1887 г. он продемонстрировал два важных факта поведения хромосом. Во-первых, он представил доказательства того, что число хромосом постоянно в разных клетках орга­низма, а во-вторых, что каждый вид харак­теризуется своим числом хромосом (теперь, к примеру, известно, что каждая клетка че­ловека содержит 46 хромосом).

Далее он обнаружил, что формирование половых клеток — яйцеклеток и спермато­зоидов — не сопровождается репликацией (удвоением) хромосом. Каждая яйцеклетка и каждый сперматозоид получают только половину обычного набора хромосом.

Американский цитолог Уолтер Саттон (1876 — 1916) указал в 1902 г., что поведе­ние хромосом подтверждают наследственные факторы по Менделю. Каждая клетка име­ет фиксированное число пар хромосом. Они способны продуцировать физические харак­теристики от клетки к клетке, поскольку при каждом клеточном делении число хромосом аккуратно сохраняется; каждая хро­мосома реплицируется для того, чтобы сфор­мировать новую клетку.

Стадии митоза:

1 — хромосомы формируют ядро; 2 — они начинают рас­щепляться на две идентичные половины; 3 — хромосомы разделились, однако остаются сдвоенными у центра; 4 — они выстроились в линию, и «астры» отодвинулись к двум полюсам; 5 — хромосомы разделились и двинулись к по­люсам; 6 — клетка начинает удлиняться; в результате сформировываются две идентичные клетки, каждая со сво­им ядром и одинаковым количеством хроматина, как в ма­теринской клетке на первой стадии.



При формировании половых клеток каж­дая получает только половину обычного на­бора хромосом (одну из каждой пары). Ког­да происходит оплодотворение от слияния сперматозоида и яйцеклетки, восстанавлива­ется обычное число хромосом. Когда опло­дотворенное яйцо делится вновь и вновь для формирования независимого организма, на­бор хромосом тщательно восстанавливается. В новом организме одна из каждой пары хромосом приходит от материнского орга­низма, а другая — от отцовского. Бесчис­ленные комбинации в дальнейшем произво­дят всевозможные вариации характеристик, на которые только способен естественный отбор.

В начале XX в. теорией эволюции и гене­тикой была достигнута определенная верши­на. Однако оказалось, что это лишь прелю­дия к еще более потрясающим открытиям.





Глава 8 Падение витализма

Азот и питание



От весьма простых начал жизнь постепенно, под давлением окружающей среды, становилась все более сложной и одновременно вырабатывала эффективные способы продолжаться. В своем бесконечном разнообразии неживая природа не могла соперничать с изощренностью живых форм. Да, поднимались все новые горы, однако такие уже бывали ранее, а живые формы каждый раз возникали неповторимыми.

Дарвинизм, таким образом, благоприятствовал витализму: в воображении людском между живым и неживым вырос немалый барьер. И действительно, во второй половине XIX в. витализм вновь стал популярен.

Однако наибольшая опасность поджидала витализм в среде химиков-органиков. Против него была на щите поднята модель молекулы протеина — и обсуждение ее поглотило химиков вплоть до конца века.

Первым заговорил о важности протеина для жизни французский физиолог Франсуа Мажанди (1783—1855). Экономические дислокации, привнесенные наполеоновскими войнами, привели к массовому голоду во многих странах, и положение беднейших слоев стало ухудшаться. Правительства забили тревогу; во Франции была создана специальная комиссия; во главе ее встал Мажанди. Целью комиссии была разработка технологии производства пищи из дешевых компонентов вроде желатина.

В 1816 г. Мажанди в опытах по кормлению собак беспротеиновой пищей, содержащей сахар, оливковое масло и воду, потерпел неудачу: собаки сдохли с голоду. Одних лишь калорий не хватало для полноценной работы организма. Кроме того, не все протеины равно полезны. К сожалению, и в опытах, где желатин был единственным протеином, собаки погибали также. Так начиналась тогда наука диетология, или изучение состава питания и его связи с жизнью и здоровьем.

Протеины отличаются от гидрокарбонатов и липидов тем, что включают в свой состав азот. По этой причине на азот как на необходимый компонент для живых организмов было обращено пристальное внимание. Французский химик Жан Батист Буссенго (1802 — 1887) начал в 1840-х годах изучать потребности растений в азоте. Он обнаружил, что у некоторых растений, например у овощей (горошка, бобов и прочих), имеется отличительная от других особенность успешно расти на безазотной почве, причем без удобрения азотом. Они не только росли, но и увеличивали содержание азота в своих тканях. Единственное заключение, к которому мог прийти Буссенго, — что эти растения потребляют азот прямо из воздуха. (Теперь нам известно, что не растения сами по себе делают это, но азотфиксирующие бактерии, поселяющиеся в клубеньках корней.)

Вместе с тем Буссенго пошел дальше, чтобы показать, что животные не могут получать азот из воздуха, а получают его с нищей.

Для этого он заострил практические и обоснованные выводы Мажанди, соотнеся содержание азота в некоторых продуктах со скоростью роста подопытных. Взаимосвязь оказалась прямой, при условии, что в качестве источника азота берется одна и та же пища. И все-таки некоторые виды питания были более эффективны, нежели другие, при аналогичном содержании азота. Это означало, что одни протеины более используются организмами, чем другие. Вплоть до конца века причины этого факта были неясны. Однако уже к 1844 г. сам Буссенго эмпирически смог составить шкалу полезности различных продуктов в качестве источника протеина.

Дальнейшую работу осуществил немецкий химик Юстус фон Либих (1805 — 1873), который за последующую декаду лет подготовил обоснованный список полезных продуктов питания. Либих сильно полагался на механистические взгляды, поэтому обосновывал проблему с точки зрения агрохимии. Он считал, что потеря урожайности культур в результате многолетнего использования земель происходит из-за разложения и потребления некоторых минеральных составляющих, необходимых растениям. Растительные ткани содержат небольшое количество натрия, калия, кальция, фосфора, а те, в свою очередь, поступают с растворимыми веществами, которые растения в состоянии поглотить. С незапамятных времен люди увеличивали плодородие почвы, возвращая ей израсходованное питание с пометом животных. Так отчего же не добавить в почву сами минералы, чистые химически и механически, не несущие неприятного запаха, вместо того чтобы вносить навоз?

Он первый начал эксперименты с химическими удобрениями. Поначалу, слишком полагаясь на выводы Буссенго о поглощении растениями азота воздуха, он потерпел неудачу. Когда Либих понял, что большинство растений получают азот от растворимых азотных компонентов почвы (нитратов), он добавил их в удобрения. Как Буссенго, так и Либиха можно считать основателями агрохимии.



Калориметрия

Либих полагал, что гидрокарбонаты и липиды — горючие вещества организма, так же как они бывают горючими, будучи брошены в огонь. Это символизировало продвижение взглядов Лавуазье, выработанных полвека ранее. Лавуазье говорил об углероде и водороде, а сейчас можно было более специфично говорить о гидрокарбонатах и липидах — и те и другие состоят из углерода и водорода (плюс присоединенные радикалы кислорода).

Взгляды Либиха воодушевили других ученых на попытки определить, соответствует ли количество тепла, полученное от такого «топлива», аналогичному, если топливо будет сожжено вне тела, в окружающем пространстве. Со временем методики стали более тонкими, эксперимент усложнялся.

Устройства, которые позволяли бы измерить количество тепла, полученного от сожженных органических компонентов, были разработаны в 1860-х годах. Бертло использовал такое устройство (калориметр) для измерения тепла, произведенного сотнями реакций. В обычном калориметре горючее вещество смешивается с кислородом в закрытой камере и смесь взрывается электрическим взрывателем. Камера окружена водой. Вода поглощает тепло, полученное при взрыве, и в зависимости от повышения температуры воды можно определить количество выделившегося тепла.

Чтобы измерить тепло, производимое организмом, необходимо соорудить настолько большой калориметр, чтобы поместить туда этот организм. Исходя из расхода кислорода, потребляемого организмом, и выхода углекислого газа можно подсчитать количество сожженных гидрокарбонатов и липидов. Можно измерить количество тепла, производимого организмом, по повышению температуры водяного «кожуха». А это количество тепла уже возможно сравнить с тем, которое выделяется при обычном сжигании тех же количеств гидрокарбонатов и липидов в окружающей среде.

Немецкий физиолог Карл фон Войт (1831 — 1908), ученик Либиха, совместно с химиком Максом фон Петтенкофером (1818 — 1901) разработал подобный калориметр. Из сделанных ими измерений явствовало, что у живой ткани нет иного источника энергии, чем тот, что наполняет неживую природу.

Макс Рубнер (1854 — 1932), ученик Войта, не оставил уже никаких сомнений в данном вопросе. Он измерил количество азота в моче и фекалиях и соотнес его с количеством потребляемого азота в пище подопытных. К 1884 г. он доказал, что гидрокарбонаты и липиды — не единственные виды топлива для организма. Молекулы протеина также могут служить топливом после того, как от них отняли азот. В 1894 г. он показал, что количества тепла, выделяемые при поедании пищи и при обычном ее сжигании, практически одинаковы. Закон сохранения энергии выполнялся как для живой, так и для неживой природы — а значит, витализм был разгромлен.

Эти новые изыскания тут же были поставлены на службу медицине. Немецкий физиолог Адольф Магнус-Леви (1865—1955) измерил минимальный выход энергии у человека и обнаружил, что при заболевании щитовидной железы этот выход энергии значительно нарушается. Таким образом, энергетика питания была использована для медицинской диагностики.

Ферментация

Успехи калориметрии в последней половине XIX в. оставили витализму одну лазейку: протеиновая природа — против непротеиновой.

Хотя закон сохранения энергии выполняется как для живых форм жизни, так и для неживых, но неодолимая преграда лежит между методами получения этой энергии.

Вне живого организма сгорание сопровождается выделением большого количества тепла и света. Скорость сгорания велика, и разрушения после него значительны. Сгорание веществ при питании не дает ни света, ни ощутимого тепла. Температура тела остается примерно одинаковой. Процесс сгорания внутри организма идет медленно и под совершенным контролем. Живая материя не требует для процесса внутреннего сгорания ни электротока, ни подвода тепла, ни сильных реагентов.

Разве это не фундаментальная разница?

Либих указывал на ферментацию как на пример: с доисторических времен человек сбраживал фруктовые соки для виноделия и зерно — для пивоварения. Для хлебопечения использовалась закваска. Все эти химические реакции касаются органических веществ. Сахар, крахмал преобразуются в алкоголь, и это напоминает реакции, идущие в живой ткани. Однако ферментация не требует сильных реагентов и катализаторов; она идет при комнатной температуре. Либих утверждал, что ферментация — чисто химический процесс. Он настаивал на том, что тут не затрагивается жизнь как таковая.

Со времен ван Левенгука было известно, что дрожжи состоят из пузырьков. Те не проявляли особых признаков живого, но в 1837 г. Шванн наблюдал почкование этих пузырьков. Поскольку это был явно процесс размножения, то можно было отнести дрожжи к живым организмам. Биологи заговорили о дрожжевых клетках, однако Либих не принял живой природы дрожжей.

Французский химик Луи Пастер (1822 — 1895) в 1856 г. был приглашен для консультации самыми знаменитыми виноделами страны. Миллионы франков бросались на ветер из-за того, что с возрастом вино и пиво делались кислыми. Как решить эту проблему?

Пастер обратился к микроскопу. Он сразу же обнаружил, что при правильном старении пива и вина они содержали крошечные сферические дрожжевые клетки. При прокисании эти клетки удлинялись. Значит, дрожжи бывают двух типов: одни производят алкоголь, другие — сбраживают вино. Осторожное нагревание прокисшего вина убивало дрожжи и останавливало процесс. Если это делалось в нужный момент, напиток был спасен!

Итак, Пастер выяснил, что, во-первых, дрожжевые клетки — живые клетки, а во-вторых, только живые, а не мертвые дрожжи могут вызывать ферментацию.

Противоречие между Либихом и Пастером разрешилось победой Пастера и... витализма. Пастер приступил к своему знаменитому эксперименту по доказательству спонтанного размножения.

В 1860 г. он прокипятил и стерилизовал мясную вырезку и оставил ее в незакрытой колбе на воздухе. Хотя к мясу существовал доступ воздуха, горло колбы было хитро изогнуто в виде буквы «S», поэтому все частицы пыли оседали в изгибе. В таких условиях на мясе не могли поселиться микроорганизмы, но при удалении изгиба горла колбы мясо сей же час протухало. Пастер доказал, что дело не в кипячении, которое убивает жизненное начало, а в недоступности пыли, содержащей микроорганизмы.

В 1850-х годах, в преддверии опыта Пастера, немецкий врач Рудольф Вирхоф при изучении зараженной ткани доказал, что больные клетки происходят от нормальных.

Причем процесс разрушения клеток идет постепенно, без внезапного нарушения структуры и содержимого. Рудольф Вирхоф стал основателем современной науки патологии. Вместе с Пастером они доказали, что, будь то целый организм или часть многоклеточного организма, вначале всегда бывает клетка. С тех пор живое было отделено от неживого неодолимой преградой. Никогда витализм еще так не укреплял свои позиции.



Энзимы

Еще в XVIII в. химики осознали, что иногда реакцию можно ускорить при помощи вещества, которое само по себе в реакции участия не принимает. Наблюдения такого сорта накапливались, пока не привлекли серьезного внимания ученых в XIX в.

Русский химик Константин Готлиб Сигизмунд Кирхгоф (1764-1833) в 1812 г. показал, что если прокипятить крахмал вместе с разведенной кислотой, то он распадется до глюкозы — простого сахара. Этого не случится, если кислота отсутствует, и все же кислота, как таковая, не принимает участия в реакции.

Четырьмя годами позже английский химик Гемфри Дэви (1778-1829) обнаружил, что платиновые провода провоцировали соединение спиртов с кислородом. Сама платина в реакции не участвовала.

Эти и другие примеры привлекли внимание Берцелиуса, который в 1836 г. предложил для таких явлений термин «катализ». Это греческое слово означает «разрушение». Обычно спирт горит в кислороде только после нагревания при высоких температурах, когда возгораются его пары. В присутствии платинового катализатора та же реакция происходит без предварительного нагревания. Можно поспорить, идут ли химические процессы в живой ткани, поскольку именно в живых тканях присутствуют определенные катализаторы, которых нет в неживой природе.

И в самом деле, в 1833 г., незадолго до Берцелиуса, французский химик Ансельм Паузн (1795 — 1871) экстрагировал из проросшего ячменя вещество, которое могло разлагать крахмал до простых Сахаров еще быстрее, чем любая кислота. Он дал веществу наименование диастаз. И диастаз, и другие подобные ему вещества были впоследствии названы ферментами из-за преображения крахмала в сахара: именно этот процесс являет собой ферментизация зерна. Вскоре ферменты были экспериментально получены из животных организмов. Первые из них добывались из желудочных соков. Реамюр показал, что пищеварение — химический процесс, и в 1824 г. английский врач Уильям Прут (1785 — 1850) выделил из желудочного сока соляную кислоту. Она был строго неорганическим веществом. Поначалу это поразило ученых, однако в 1835 г. Шванн, один из основателей клеточной теории, получил экстракт желудочного сока, который не содержал соляной кислоты, но разлагал мясо быстрее, чем кислота. Это вещество Шванн назвал пепсином (от греческого слова, в переводе означающего «переваривать»); это и был истинный фермент. Постепенно были открыты и другие ферменты; стало совершенно очевидным, что ферменты — это и есть катализаторы процессов, идущих в живых тканях; химики не могли ранее синтезировать некоторые вещества, производимые в этих тканях, поскольку не имели в своем арсенале таких катализаторов. Протеины оставались щитом виталистов, и витализм быстро прозрел, что ферменты — белковые по природе образования, хотя это не было доказано вплоть до XX в.

Слабым местом для виталистов, однако, оставалось то, что некоторые ферменты «срабатывали» как внутри клетки, так и вне ее. Ферменты, изолированные от пищеварительных соков, выполняли свою работу в тестах. Можно было предположить, что, если получить хотя бы один из ферментов, любую реакцию, идущую в живом организме, удалось бы воспроизвести. Более того, ферменты следовали тем же правилам, что неорганические катализаторы, например кислоты или платина.

Следуя виталистической позиции, ферменты, выделенные из пищеварительных соков, выполняли свою роль как внутри, так и вне клетки. Пищеварительный сок, циркулирующий внутри пищеварительного тракта, можно было налить и в трубку в эксперименте. Виталисты настаивали, что химики не в силах смоделировать эти процессы.

Ферменты к тому времени были разделены на две группы: неорганизованные ферменты, работающие также вне клетки, например пепсин; организованные ферменты, работающие только внутри клетки, которые заставляли дрожжи превращать сахар в алкоголь.

В 1876 г. немецкий физиолог Вильгельм Кюн (1837 — 1900) предложил использовать слово «фермент» только для процессов, требующих присутствия живого материала. Те ферменты, которые, будучи выделенными, могли работать вне клетки, он предложил называть энзимами (от греческого слова, означающего «дрожжи»).

В 1897 г. позиция виталистов в целом была подорвана немецким химиком Эдуардом Бюхнером (1860—1917). Он растер клетки дрожжей с песком до полного уничтожения, а затем профильтровал полученный материал, выделив клеточный дрожжевой сок. Ученый предполагал, что этот сок не обладает ферментизирующей способностью. Он добавил сок к сахару и, к своему изумлению, обнаружил, что сахар начал медленно ферментизироваться, хотя вся смесь была абсолютно неживой. Бюхнер продолжил эксперименты, убивая дрожжи спиртом, и обнаружил, что мертвые клетки дрожжей ферментизируют сахар так же, как и живые.

К концу XIX в. было признано, что все ферменты, как организованные, так и неорганизованные, можно выделить из клеток и заставить проделывать работу вне клеток. Термин «энзим» был применен ко всем ферментам, и было, наконец, признано, что клетка не содержит некоей жизненной силы.

Позиции Пастера и виталистов пошатнулись. Ферментация шла вне клетки, без некоей жизненной силы. Однако и тогда позиции виталистов не были разгромлены. Еще много необходимо было узнать о молекуле протеина (как об энзимах, так и неэнзимах), и не было уверенности в том, что жизненная сила не проявит себя как-либо еще.

До сих пор некоторые биологи стоят на виталистских позициях; однако общепринято в биологии, что живые формы подчиняются тем же законам, что и неживые; в лабораторных условиях можно смоделировать практически все ситуации.

Победу одержала механистическая точка зрения.



Глава 9 Болезням объявлена война

Вакцинации

Рассматривая дискуссии относительно эволюции и витализма, важно не забывать, что человеческий интерес к биологии вырос из практического интереса к медицине; нарушения функционирования организма были «закваской» научных экспериментов.

В качестве примера рассмотрим историю инфекционных заболеваний. До начала XIX в. врачи оставались бессильны перед лицом инфекционных болезней и эпидемий. Одной из опаснейших болезней была оспа. Мало того, что она распространялась как огонь, мало того, что убивала каждого третьего из зараженных, — те, кого удалось спасти, оставались несчастными на всю жизнь; мало кто мог без содрогания взглянуть на их изуродованные лица.

Однако переболевшие оспой получали устойчивость к заражению ею на всю жизнь. По этой причине любая атака оспы была благоприятной для подвергшихся ей, но оставшихся в живых. В таких странах, как Турция и Китай, были сделаны попытки «уловить» болезнь и даже сделать прививки материалом, добытым из оспин. Риск был страшно велик, поскольку иногда привитые умирали.

В первой половине XVIII в. прививки были впервые введены в Англии, однако не были приняты. Английский врач Эдуард Дженнер (1749 — 1823) пересмотрел вопрос о прививках и взял на вооружение народное поверье о том, что переболевший в результате заражения от рогатого скота коровьей оспой (мягкой болезнью, по симптомам напоминающей человеческую оспу) на всю жизнь получает иммунитет.

Дженнер решил проверить это утверждение. В 1796 г., взяв жидкий материал из оспины на руке молочницы, больной коровьей оспой, он привил его некоему мальчику. Два месяца спустя он повторил прививку мальчику, однако, уже вакциной человеческой оспы. Мальчик не заболел. В 1798 г. врач опубликовал результаты своих экспериментов.

Именно Дженнер ввел термин «вакцинация», который происходит от латинского «вакка» — «корова».

Вакцинация распространилась по Европе моментально, и болезнь была побеждена. Оспа стала первой серьезной болезнью человечества, над которой до сих пор сохраняется строгий контроль.

Однако продвижение вакцинаций было невозможно без серьезной теоретической базы.

Никто не знал в то время причин инфекционных заболеваний, для этого нужны были более фундаментальные знания, чем те, которыми обладало человечество.



Микробиологическая теория заболеваний

Теория, необходимость которой давно назрела, родилась у Пастера, чей интерес к микробиологии пришел от проблемы ферментации.

В 1865 г. шелковая индустрия на юге Франции понесла большие потери: некая болезнь убивала шелковичного червя. И вновь пригласили Пастера. При помощи микроскопа он обнаружил, что на черве живет крошечный паразит, заражавший непосредственно листья шелковицы, которыми питались черви. Решение Пастера было, хотя ужасающим для шелководов, но рациональным: уничтожить больные колонии червя. Шелковичная индустрия была спасена.

Пастер предположил, что если одна инфекционная болезнь может быть вызвана микроорганизмами, то это, вполне вероятно, относится и к другим. Заболевание может распространяться через кашель, насморк, поцелуи, испражнения; могут быть заражены вода и пища. В каждом случае микроорганизмы, вызывающие заболевание, переходят от больного организма к здоровому. И сам врач, контактируя с больными, может быть первым разносчиком заболевания.

Последнее заключение сделал венгерский врач Игнас Филипп Цемельвейс (1818 — 1865). Не зная об открытиях Пастера, он отметил, что заболеваемость и смертность среди рожениц в больницах Вены была гораздо выше, чем среди женщин, рожавших дома при помощи неграмотных, как правило, повивальных бабок. Значит, разносчиками заболевания являлись сами врачи. Он настоял на том, чтобы врачи, приближаясь к роженице, дезинфицировали руки. Смертность упала, однако оскорбленные врачи-акушеры «выжили» его из сферы своей деятельности, и смертность рожениц вновь поднялась. Цемельвейс умер побежденным и не увидел торжества своей правоты (примерно в это же время в США врач и поэт Оливер Уэнделл Холмс (1809 — 1894) вел такую же кампанию против грязных рук врачей — и тоже вызвал целый поток оскорблений и выпадов против себя).

Однако наука шла вперед, и условия работы врачей и ученых постепенно менялись. Консервативно настроенные постепенно также сменили позиции. Во время русско-французской войны Пастеру удалось убедить военных врачей в необходимости кипячения инструментов и стерилизации бинтов.

Тем временем в Англии хирург Джозеф Листер (1827-1912) начал реформы в своей области. Он первым ввел анестезию. По его методике пациент дышал смесью воздуха и эфира. Это вызывало столь глубокий сон, что боль не ощущалась. Теперь удаление зубов и выполнение операций, возможно, было без мук. Несколько личностей внесли в эти разработки свой вклад, пожертвовав деньги, но - Львиная доля кредитования пришлась на американского дантиста Уильяма Томаса Грина Нортона (1819—1868), который разработал методику удаления опухоли лицевого нерва в Массачусетском госпитале в октябре 1846 г. После этого анестезию ждал быстрый успех.

Но и тут врачей поджидало разочарование: несмотря на анестезию, а также успешные операции, пациенты могли впоследствии умереть от инфекции. Листер услышал о теории Пастера и пришел к выводу о необходимости стерилизации хирургического инструмента и места операции. Для стерилизации поначалу использовалась карболовая кислота (фенол). Листер ввел в хирургию понятие антисептика.

Постепенно вырабатывались другие, менее раздражающие и более эффективные химические агенты медицинского назначения. Хирурги стали надевать резиновые перчатки и маски на лицо. Наконец-то хирургия стала безопасной для человечества.

Даже если бы теория Пастера послужила только септической безопасности в медицине, она уже стала бы величайшим открытием человечества. Но она сделала для человечества много, много более.

Бактериология

Нельзя постоянно изолировать человека от болезнетворных организмов. Раньше или позже, но болезнь и организм, наконец, встретятся. И что тогда?

У человеческого тела есть свои способы противостояния микроорганизмам, и наш организм обладает особенностью спонтанно выздоравливать. В 1884 г. русско-французский биолог Илья Мечников (1845 — 1916) сообщил о факте и противобактериального противостояния. Он показал, как белые кровяные тельца, выходящие по мере необходимости из сосудов, окружали очаг инфекции. То, что удалось Мечникову наблюдать, выглядело как битва между бактериями и белыми кровяными тельцами, причем последние побеждали не всегда, но если побеждали — наступал благоприятный перелом в болезни.

Однако в случае многих заболеваний имеется и более утонченное антибактериальное оружие: это иммунитет. И ранее уже было известно, что выздоровление после некоторых болезней служит человеку защитой против других болезней — несмотря на то что в организме не видны никакие особенные изменения. Логическое объяснение этому может быть одно: организм сам вырабатывает некоторые молекулы (антитела), которые можно использовать для уничтожения болезнетворных микроорганизмов либо их нейтрализации. Это объясняет эффект вакцинации, когда организм вырабатывает антитела против коровьей оспы и использует их в борьбе против оспы человеческой.

Теперь эта победа могла быть утверждена не только через атаку против болезни, но против микроорганизмов, которые вызывали заболевания. Пастер доказал наличие иммунитета на примере вакцинации скота против сибирской язвы — смертельной болезни, уносившей ежегодно большое поголовье. Пастер выявил возбудителя сибирской язвы. Он достаточно долго нагревал штамм этой бактерии, чтобы убить ее способность заражать. Такие неопасные, уже «мертвые» вакцины просто самим фактом присутствия в организме побудят его вырабатывать антитела, которые могут быть использованы против активных и смертельно опасных бактерий.

В 1881 г. Пастер провел драматический эксперимент. Он инокулировал части поголовья овец «мертвую», неактивную сыворотку язвы, другую же часть поголовья оставил непривитой. Все овцы, которым была сделана вакцинация, выжили, невакцинированные — заболели и погибли.

Такие же результаты были получены Пастером относительно куриной холеры и страшного заболевания бешенства — болезни «бешеных собак».

Теория Пастера и его эксперименты вызвали интенсивный интерес к бактериологии. Немецкий ботаник Фердинанд Юлиус Кон (1828—1898) в юности интересовался микроскопированием растительных клеток. Он, в частности, показал, что протоплазмы растительной и животной клеток идентичны. В 1860-х годах он обратился к бактериям и в 1872 г. опубликовал трехтомные наблюдения над микроорганизмами, которые пытался классифицировать на роды и виды. По этой причине Кона можно считать основоположником науки бактериологии.

Самое важное открытие пришлось на долю немецкого врача Роберта Коха (1843—1910). В 1876 г. Кох выделил бактерию, вызывающую сибирскую язву, и сумел ее культивировать (как и Пастер во Франции). Кох обратил на свои работы внимание Кона, и тот щедро спонсировал его работы.

Кох выращивал бактерию на твердом геле наподобие желатина (для которого позднее стали использовать агар-агар — вещество, выделяемое из водорослей). Это дало эффект: в жидкости бактерии разных видов интенсивно смешиваются, поэтому затруднительно определить, какой именно вид дает заболевание.

Если распределить (размазать) культуру бактерий по твердой поверхности, изолированная культура будет многократно делиться, производя многочисленные новые клетки, которые уже образуют четкие колонии. Хотя культура может быть смесью многих видов бактерий, одна колония будет образовывать чистый штамм. Если именно эта разновидность бактерий в эксперименте даст заболевание, то уже не останется сомнений, что именно она ответственна за него.

Первоначально Кох поместил гель на гладкое стекло, однако его помощник Юлиус Ричард Петри (1852 — 1921) предложил плоскую, круглую в сечении чашку со стеклянной крышкой. С тех пор в бактериологии пользуются этими чашками Петри.

Работая с чистыми штаммами, Кох вывел ряд правил для выявления микроорганизмов, вызывающих конкретное заболевание. Он с помощниками выявил множество возбудителей, и наивысшей точкой в профессиональной деятельности Коха было выделение в 1882 г. возбудителя туберкулеза.

Насекомые

Бактерии — не единственные агенты инфекционных заболеваний, вот отчего открытие Пастера именуется еще теорией микроорганизмов.В 1880 г. французский врач Шарль Луи Альфонс Лаверан (1845 — 1922), работая в Алжире, выявил возбудителя малярии. Малярия — распространенное заболевание во всех тропических и субтропических странах, уносящее ежегодно больше жизней, чем любое другое. Открытие было особенно интересно тем, что возбудителем оказалась не бактерия, а простейшее — одноклеточный микроорганизм.

На самом деле заболевание может и не вызываться этим простейшим. В 1860-х годах немецкий зоолог Карл Георг Фридрих Рудольф Лескарт (1822 —1898), исследуя беспозвоночных, выявил целый ряд паразитов, живущих внутри других животных организмов. Это положило начало науке паразитологии. Он выяснил, что все беспозвоночные имеют своих паразитов. Также паразиты инфицируют и человека, а некоторые из них, такие как ленточные глисты, трематолы и прочие, вызывают серьезные заболевания.

Многоклеточные животные, даже не будучи прямыми агентами заболеваний, могут быть их носителями. Малярия была первым заболеванием, в котором стал рассматриваться этот аспект. Английский врач Роналд Росс (1857 — 1932) исследовал свои предположения, что москиты распространяют малярию от больного человека к здоровому. Он собрал москитов и после тщательных исследований в 1897 г. выявил малярийного паразита в организме комара — анофелес,

В цепи заболевания комар до сих нор представлял слабое звено, поэтому результат исследования был исключительно важен. Можно легко показать, что малярия не распространяется при прямом контакте (паразит Должен пройти через паразитическую жизненную стадию в теле москита, прежде чем проникнет в кровь человека). Так почему же не исключить носителя заболевания — москита? Почему не спать, например, под противомоскитной сеткой? Почему не осушать болота, в которых размножается комар? Там, где применялись такие методы, малярия была побеждена.

Еще одно смертельно опасное заболевание, которое в XVIII —XIX вв. периодически вызывало эпидемии на Восточном побережье США, — желтая лихорадка. Во время испано-американской войны на Кубе от этой болезни погибло солдат больше, чем от испанских ружей. В 1899 г., по окончании войны, американский военный хирург Уолтер Рид (1851 — 1902) был послан на Кубу, чтобы исследовать способы борьбы с заболеванием. Он также обнаружил, что желтая лихорадка не распространяется при прямом контакте, и, опираясь на работы Росса, заподозрил в качестве возбудителя москита — на сей раз иного вида. Врачи, работавшие с Ридом, также заболели желтой лихорадкой, поскольку сами подставляли себя под укус москитов. Один из молодых врачей, Джесс Уильям Лазар (1866— 1900), заболев, умер и тем самым доказал источник заболевания.

Другой американский хирург, Уильям Крауфорд Джоргас (1854—1920), использовал разные способы борьбы с москитами в Гаване, а затем в Панаме. США пытались построить там канал, хотя Франция отказалась от этой идеи, потерпев поражение. Трудности оказались слишком велики, но на самом деле именно высокая смертность строителей стала первопричиной отказа. Джоргас взял численность москитов под контроль, и в 1914 г. канал был, наконец, открыт.

Не только комары различных видов играли роль злодеев, В 1902 г. французский врач Шарль-Жап-Анри Николь (1866—1936) был назначен директором Пастеровского института в Тунисе. Он имел возможность изучать смертельно опасное заболевание — тиф.

Николь заметил, что вне госпитальных условий болезнь была очень контагиозна, а внутри госпиталя — крайне опасна. Пациентов госпиталя проводили через строжайшую дезинфекцию, поэтому Николь предположил, что инфекционный агент должен иметь какое-то отношение к одежде пациентов и может быть смыт с тела водой.

Подозрение пало на человеческую вошь. Экспериментируя на животных, Николь доказал, что болезнь передается через укус вшей.

Аналогично в 1906 г. американский патолог Хауард Тейлор Риккетс (1871 — 1910) доказал, что лихорадка Скалистых гор передается через укус овечьего клеща.



Пищевой фактор

Микробиологическая теория доминировала в сознании большинства врачей в последнюю треть XIX в., однако имелись и противники ее. Наиболее именитым был немецкий патолог Вирхов. Он предпочитал думать, что болезнь вызывает некий болезнетворный агент, находящийся внутри, а не вне организма, Вирхов был также человеком с значительной социальной активностью и принимал участие в Национальном институте юриспруденции и городском управлении Берлина. Он выдвинул несколько предложений об улучшении водоснабжения города и системы канализации. Вирхов может по праву считаться одним из основателей социальной гигиены (основ предотвращения заболеваний в социумах).

Подобные усовершенствования мешали массовому распространению болезней.

Мысль Гиппократа о важности личной гигиены и чистоты в целом вновь возобладала в обществе. Еще более удивительно, что вспомнилась и вторая идея Гиппократа: о необходимости, сбалансированной и разнообразной пищи для предотвращения заболеваний.

В период Великих географических открытий при длительных путешествиях не соблюдалось ни одно из этих правил, тем более что холодильники в ту пору были неизвестны человечеству. Века напролет свирепствовала цинга. Шотландский врач Джеймс Линд (1714 — 1794) отметил тот факт, что цинга возникает на фоне однообразной пищи и не только при морских путешествиях, но и в осажденных городах и тюрьмах.

В 1747 г. Линд экспериментально подтвердил, что соки цитрусовых культур благотворно влияли на состояние больных цингой, и те удивительно быстро выздоравливали. Капитан Джеймс Кук, великий английский первооткрыватель, поил своих моряков соком цитрусовых в морских путешествиях, в результате чего от цинги у него умер всего один моряк. В 1795 г., после неудачной войны с Францией, командование английского флота приняло решение о введении сока цитрусов в рацион моряков, и цинга покинула английские корабли.

В XIX в. основные открытия в питании касались значения протеина и факта, что некоторые протеины полные — в то время как другие, например желатин, неполные — и могут в одиночку поддерживать жизнь.

Однако объяснение этому пришло лишь с более подробным изучением молекулы протеинов. В 1820 г. сложную молекулу желатина удалось расщепить обработкой кислотой и изолировать простую молекулу так называемого глицина. Глицин относился к аминокислотам.

Поначалу предполагали, что глицин — блок, из которых состоит протеин, подобно тому, как простой сахар — глюкоза — строительный материал для сложной молекулы крахмала. Но в XIX в. эта теория уже стала неадекватной. Из разных протеинов удалось выделить другие простые молекулы. Все они были из класса аминокислот, однако разнились в деталях. Протеиновые молекулы оказались составленными из разных аминокислот.

К 1900 г. было уже известно около дюжины разных аминокислот.

Некоторые аминокислоты, оказывается, насущно необходимы для жизни.

Первым это показал английский биохимик Фредерик Гоуленд Хонкинс (1861 — 1947). В 1900 г. он открыл новую аминокислоту, триптофан, и разработал химический тест на ее присутствие. Зеин, протеин, содержащийся в кукурузе, был неполным протеином, поскольку в одиночку не мог поддерживать жизнь. Если к зеину добавить некоторое количество триптофана, жизнь подопытных худо-бедно поддерживалась.

Подобные эксперименты проводили и в первые десятилетия XX в., в результате выявили, какие аминокислоты воспроизводятся материнским организмом и тот факт, что некоторые из них синтезировать невозможно. Именно отсутствие одной или более жизненно важных аминокислот делало протеины неполными, приводило к заболеваниям и смертности.

Таким образом, в число медицинских понятий вошел фактор питания, однако вопрос аминокислот, сколь бы важным он ни был для диеты, не стал существенным для медицины.

Тайну, оказалось, разрешить легче, чем представлялось ранее. После выработки концепции существенных аминокислот были открыты другие вещества, необходимые лишь в следовых (малых) количествах.

Витамины

Голландский врач Христиан Эйкман (1858 — 1930) в 1886 г. был командирован на Яву для изучения болезни бери-бери (авитаминоза). Были причины предположить, что болезнь могла явиться результатом несбалансированной диеты. Японские моряки неимоверно страдали от этой странной болезни. В 1880-х годах, когда по приказу японского адмирала к рациону, составлявшему ранее рыбу и рис, были добавлены молоко и мясо, болезнь почти отступила.

Эйкман, будучи поклонником микробиологической теории, полагал, что возбудитель болезни — бактерия. Он привез с собой на Яву выводок цыплят и вознамерился выявить возбудителя в их организмах. Сделать это ему не удалось, но в 1896 г. подопытные цыплята начали погибать от заболевания, по симптомам очень похожего на бери-бери. Эйкман вновь не сумел выявить причин: болезнь исчезла.

Восстанавливая историю своих подопытных, Эйкман выяснил, что некоторое время их кормили только рисом из госпитальных запасов и именно в это время они заболели. Откормив оставшихся в живых коммерческим кормом, специально разработанным для цыплят, их спасли. Вскоре Эйкман убедился, что болезнь как возникает, так к излечивается при смене рациона.

Поначалу он не оценил по достоинству важность своих наблюдений. Он предполагал наличие в рисе какого-либо токсина. Его дело продолжили Хопкинс и биохимик-поляк Казимир Фанк. Каждый независимо друг от друга предположил, что не только бери-бери, но и такие болезни, как цинга, пеллагрй, рахит, бывают вызваны дефицитом каких-то веществ в следовых количествах в рационе.

Под впечатлением того, что почти все пищевые продукты принадлежат к классу веществ, известных под названием амины, Фанк в 1912 г. предложил назвать эти вещества витаминами («вита» — жизнь).

Витаминная гипотеза Хопкинса — Фанка появилась вовремя: уже в первой трети XX в. удалось победить некоторые заболевания, просто установив разумный рацион, или диету. Австрийско-американский врач Джозеф Голдбергер (1874 — 1929) показал в 1915 г., что эндемическая болезнь пеллагра, характерная для американского Юга, вовсе не бактериального происхождения. Она была преодолена добавлением молока в рацион больных.

Поначалу о витаминах не было известно ничего, помимо их способности преодолевать и излечивать болезни. Американский биохимик Элмер Верной Макколлам в 1913 г. предложил именовать витамины первыми буквами латинского алфавита. Теперь науке известны витамины А, В, С, D, Е, К. Впоследствии выяснилось, что витамин В способен корректировать несколько разных симптомов, поэтому выделили витамины В1, В2 и т. д.

Именно дефицит В1 вызывал болезнь бери-бери, а дефицит В6 — пеллагру. Дефицит витамина С ведет к цинге, а витамина D — к рахиту. Недостаток витамина А становится причиной ухудшения зрения и вызывает ночную слепоту. По мере накопления знаний о витаминах такие заболевания перестали быть серьезной проблемой человечества.



Глава 10 Нервная система

Гипнотизм